准确的头部姿态跟踪在低分辨率视频

J. Tu, Thomas S. Huang, Hai Tao
{"title":"准确的头部姿态跟踪在低分辨率视频","authors":"J. Tu, Thomas S. Huang, Hai Tao","doi":"10.1109/FGR.2006.19","DOIUrl":null,"url":null,"abstract":"Estimating 3D head poses accurately in low resolution video is a challenging vision task because it is difficult to find continuous one-to-one mapping from person-independent low resolution visual representation to head pose parameters. We propose to track head poses by modeling the shape-free facial textures acquired from the video with subspace learning techniques. In particular, we propose to model the facial appearance variations online by incremental weighted PCA subspace with forgetting mechanism, and we do the tracking in an annealed particle filtering framework. Experiments show that, the tracking accuracy of our approach outperforms past visual face tracking algorithms especially in low resolution videos","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Accurate Head Pose Tracking in Low Resolution Video\",\"authors\":\"J. Tu, Thomas S. Huang, Hai Tao\",\"doi\":\"10.1109/FGR.2006.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating 3D head poses accurately in low resolution video is a challenging vision task because it is difficult to find continuous one-to-one mapping from person-independent low resolution visual representation to head pose parameters. We propose to track head poses by modeling the shape-free facial textures acquired from the video with subspace learning techniques. In particular, we propose to model the facial appearance variations online by incremental weighted PCA subspace with forgetting mechanism, and we do the tracking in an annealed particle filtering framework. Experiments show that, the tracking accuracy of our approach outperforms past visual face tracking algorithms especially in low resolution videos\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在低分辨率视频中准确估计3D头部姿态是一项具有挑战性的视觉任务,因为很难找到从独立于人的低分辨率视觉表示到头部姿态参数的连续一对一映射。我们提出利用子空间学习技术对视频中获取的无形状面部纹理进行建模,从而跟踪头部姿态。特别地,我们提出了基于遗忘机制的增量加权PCA子空间在线建模面部外观变化,并在退火粒子滤波框架中进行跟踪。实验表明,该方法的跟踪精度优于以往的视觉人脸跟踪算法,特别是在低分辨率视频中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Head Pose Tracking in Low Resolution Video
Estimating 3D head poses accurately in low resolution video is a challenging vision task because it is difficult to find continuous one-to-one mapping from person-independent low resolution visual representation to head pose parameters. We propose to track head poses by modeling the shape-free facial textures acquired from the video with subspace learning techniques. In particular, we propose to model the facial appearance variations online by incremental weighted PCA subspace with forgetting mechanism, and we do the tracking in an annealed particle filtering framework. Experiments show that, the tracking accuracy of our approach outperforms past visual face tracking algorithms especially in low resolution videos
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信