JPEG图像的有效过滤

David Edmundson, G. Schaefer
{"title":"JPEG图像的有效过滤","authors":"David Edmundson, G. Schaefer","doi":"10.1109/ISM.2012.88","DOIUrl":null,"url":null,"abstract":"With image databases growing rapidly, efficient methods for content-based image retrieval (CBIR) are highly sought after. In this paper, we present a very fast method for filtering JPEG compressed images to discard irrelevant pictures. We show that compressing images using individually optimised quantisation tables not only maintains high image quality and therefore allows for improved compression rates, but that the quantisation tables themselves provide a useful image descriptor for CBIR. Visual similarity between images can thus be expressed as similarity between their quantisation tables. As these are stored in the JPEG header, feature extraction and similarity computation can be performed extremely fast, and we consequently employ our method as an initial filtering step for a subsequent CBIR algorithm. We show, on a benchmark dataset of more than 30,000 images, that we can filter 80% or more of the images without a drop in retrieval performance while reducing the online retrieval time by a factor of at about 5.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Filtering of JPEG Images\",\"authors\":\"David Edmundson, G. Schaefer\",\"doi\":\"10.1109/ISM.2012.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With image databases growing rapidly, efficient methods for content-based image retrieval (CBIR) are highly sought after. In this paper, we present a very fast method for filtering JPEG compressed images to discard irrelevant pictures. We show that compressing images using individually optimised quantisation tables not only maintains high image quality and therefore allows for improved compression rates, but that the quantisation tables themselves provide a useful image descriptor for CBIR. Visual similarity between images can thus be expressed as similarity between their quantisation tables. As these are stored in the JPEG header, feature extraction and similarity computation can be performed extremely fast, and we consequently employ our method as an initial filtering step for a subsequent CBIR algorithm. We show, on a benchmark dataset of more than 30,000 images, that we can filter 80% or more of the images without a drop in retrieval performance while reducing the online retrieval time by a factor of at about 5.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着图像数据库的快速发展,高效的基于内容的图像检索(CBIR)方法受到了广泛的关注。在本文中,我们提出了一种非常快速的方法来过滤JPEG压缩图像,以丢弃不相关的图像。我们表明,使用单独优化的量化表压缩图像不仅可以保持高图像质量,因此可以提高压缩率,而且量化表本身为CBIR提供了有用的图像描述符。因此,图像之间的视觉相似性可以表示为它们的量化表之间的相似性。由于这些都存储在JPEG标头中,特征提取和相似度计算可以非常快地执行,因此我们使用我们的方法作为后续CBIR算法的初始过滤步骤。我们在超过30,000张图像的基准数据集上显示,我们可以过滤80%或更多的图像而不会降低检索性能,同时将在线检索时间减少约5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Filtering of JPEG Images
With image databases growing rapidly, efficient methods for content-based image retrieval (CBIR) are highly sought after. In this paper, we present a very fast method for filtering JPEG compressed images to discard irrelevant pictures. We show that compressing images using individually optimised quantisation tables not only maintains high image quality and therefore allows for improved compression rates, but that the quantisation tables themselves provide a useful image descriptor for CBIR. Visual similarity between images can thus be expressed as similarity between their quantisation tables. As these are stored in the JPEG header, feature extraction and similarity computation can be performed extremely fast, and we consequently employ our method as an initial filtering step for a subsequent CBIR algorithm. We show, on a benchmark dataset of more than 30,000 images, that we can filter 80% or more of the images without a drop in retrieval performance while reducing the online retrieval time by a factor of at about 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信