{"title":"乘子的扩展线性增广拉格朗日方法的矩阵补全","authors":"Fengming Ma, Mingfang Ni, Wei Tong, Xinrong Wu","doi":"10.1109/ICCSS.2015.7281147","DOIUrl":null,"url":null,"abstract":"The problem of recovering low-rank matrix from only a subset of observed entries is known as the matrix completion problem. Many problems arising in compressive sensing, image processing, machine learning, can be usefully cast as this problem. In this paper, we propose an extended linearized augmented Lagrangian method of multipliers for the problem, and prove its global convergence. We show that all the resulting subproblems have closed-forms solutions. Finally, some numerical experiments are conducted to show its efficiency.","PeriodicalId":299619,"journal":{"name":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matrix completion via extended linearized augmented Lagrangian method of multipliers\",\"authors\":\"Fengming Ma, Mingfang Ni, Wei Tong, Xinrong Wu\",\"doi\":\"10.1109/ICCSS.2015.7281147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of recovering low-rank matrix from only a subset of observed entries is known as the matrix completion problem. Many problems arising in compressive sensing, image processing, machine learning, can be usefully cast as this problem. In this paper, we propose an extended linearized augmented Lagrangian method of multipliers for the problem, and prove its global convergence. We show that all the resulting subproblems have closed-forms solutions. Finally, some numerical experiments are conducted to show its efficiency.\",\"PeriodicalId\":299619,\"journal\":{\"name\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS.2015.7281147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS.2015.7281147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matrix completion via extended linearized augmented Lagrangian method of multipliers
The problem of recovering low-rank matrix from only a subset of observed entries is known as the matrix completion problem. Many problems arising in compressive sensing, image processing, machine learning, can be usefully cast as this problem. In this paper, we propose an extended linearized augmented Lagrangian method of multipliers for the problem, and prove its global convergence. We show that all the resulting subproblems have closed-forms solutions. Finally, some numerical experiments are conducted to show its efficiency.