Pawel Ciosmak, L. Hadasz, Masahide Manabe, P. Sułkowski
{"title":"量子曲线的奇异向量结构","authors":"Pawel Ciosmak, L. Hadasz, Masahide Manabe, P. Sułkowski","doi":"10.1090/pspum/100/01766","DOIUrl":null,"url":null,"abstract":"We show that quantum curves arise in infinite families and have the structure of singular vectors of a relevant symmetry algebra. We analyze in detail the case of the hermitian one-matrix model with the underlying Virasoro algebra, and the super-eigenvalue model with the underlying super-Virasoro algebra. In the Virasoro case we relate singular vector structure of quantum curves to the topological recursion, and in the super-Virasoro case we introduce the notion of super-quantum curves. We also discuss the double quantum structure of the quantum curves and analyze specific examples of Gaussian and multi-Penner models.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Singular vector structure of quantum\\n curves\",\"authors\":\"Pawel Ciosmak, L. Hadasz, Masahide Manabe, P. Sułkowski\",\"doi\":\"10.1090/pspum/100/01766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that quantum curves arise in infinite families and have the structure of singular vectors of a relevant symmetry algebra. We analyze in detail the case of the hermitian one-matrix model with the underlying Virasoro algebra, and the super-eigenvalue model with the underlying super-Virasoro algebra. In the Virasoro case we relate singular vector structure of quantum curves to the topological recursion, and in the super-Virasoro case we introduce the notion of super-quantum curves. We also discuss the double quantum structure of the quantum curves and analyze specific examples of Gaussian and multi-Penner models.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/pspum/100/01766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/100/01766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that quantum curves arise in infinite families and have the structure of singular vectors of a relevant symmetry algebra. We analyze in detail the case of the hermitian one-matrix model with the underlying Virasoro algebra, and the super-eigenvalue model with the underlying super-Virasoro algebra. In the Virasoro case we relate singular vector structure of quantum curves to the topological recursion, and in the super-Virasoro case we introduce the notion of super-quantum curves. We also discuss the double quantum structure of the quantum curves and analyze specific examples of Gaussian and multi-Penner models.