广义脊函数的xfact反演

E. Miqueles, A. R. Pierro
{"title":"广义脊函数的xfact反演","authors":"E. Miqueles, A. R. Pierro","doi":"10.1109/ISBI.2010.5490060","DOIUrl":null,"url":null,"abstract":"X-Ray fluorescence computed tomography (xfct) aims at reconstructing fluorescence density from emission data given the measured x-ray attenuation. In this paper, inspired by the classical results from Logan & Shepp [3], we briefly discuss the existence of generalized ridge functions providing the minimal norm solution of the inverse problem. An algorithm to construct such functions is presented, based on results from Kazantsev [4]. Numerical results are also shown, with real and simulated data.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xfct inversion by generalized ridge functions\",\"authors\":\"E. Miqueles, A. R. Pierro\",\"doi\":\"10.1109/ISBI.2010.5490060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-Ray fluorescence computed tomography (xfct) aims at reconstructing fluorescence density from emission data given the measured x-ray attenuation. In this paper, inspired by the classical results from Logan & Shepp [3], we briefly discuss the existence of generalized ridge functions providing the minimal norm solution of the inverse problem. An algorithm to construct such functions is presented, based on results from Kazantsev [4]. Numerical results are also shown, with real and simulated data.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

x射线荧光计算机断层扫描(xfct)的目的是根据给定测量的x射线衰减的发射数据重建荧光密度。在本文中,受Logan & Shepp[3]经典结果的启发,我们简要讨论了提供逆问题最小范数解的广义脊函数的存在性。基于Kazantsev[4]的结果,提出了一种构造此类函数的算法。给出了数值计算结果,并结合了实际数据和模拟数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Xfct inversion by generalized ridge functions
X-Ray fluorescence computed tomography (xfct) aims at reconstructing fluorescence density from emission data given the measured x-ray attenuation. In this paper, inspired by the classical results from Logan & Shepp [3], we briefly discuss the existence of generalized ridge functions providing the minimal norm solution of the inverse problem. An algorithm to construct such functions is presented, based on results from Kazantsev [4]. Numerical results are also shown, with real and simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信