基于狗图像数据集的各种生成对抗网络性能分析

Ayush Jain, A. Bansal, Yogesh Kakde
{"title":"基于狗图像数据集的各种生成对抗网络性能分析","authors":"Ayush Jain, A. Bansal, Yogesh Kakde","doi":"10.1109/incet49848.2020.9154071","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Network is a novel concept for a general purpose solution to Deep Fake Image generation. These networks learn mapping from input image to output image and also assign value in loss function for the same mapping. We demonstrate that this approach is effective to synthesize images from labelled images, and colorizing images, and other tasks. We have investigate performance of three different types of model i.e. simple GAN, DC-GAN, BIG-GAN, which have provided different results with generation of different loss function on the same dataset i.e. Stanford Dogs Dataset. In this paper, we have investigated the performance of models by using inception score and also track the loss function at different stages (epochs).","PeriodicalId":174411,"journal":{"name":"2020 International Conference for Emerging Technology (INCET)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Various Generative Adversarial Network using Dog image Dataset\",\"authors\":\"Ayush Jain, A. Bansal, Yogesh Kakde\",\"doi\":\"10.1109/incet49848.2020.9154071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Network is a novel concept for a general purpose solution to Deep Fake Image generation. These networks learn mapping from input image to output image and also assign value in loss function for the same mapping. We demonstrate that this approach is effective to synthesize images from labelled images, and colorizing images, and other tasks. We have investigate performance of three different types of model i.e. simple GAN, DC-GAN, BIG-GAN, which have provided different results with generation of different loss function on the same dataset i.e. Stanford Dogs Dataset. In this paper, we have investigated the performance of models by using inception score and also track the loss function at different stages (epochs).\",\"PeriodicalId\":174411,\"journal\":{\"name\":\"2020 International Conference for Emerging Technology (INCET)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/incet49848.2020.9154071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/incet49848.2020.9154071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生成对抗网络是深度假图像生成通用解决方案的一个新概念。这些网络学习从输入图像到输出图像的映射,并为相同的映射在损失函数中赋值。我们证明了这种方法可以有效地从标记图像中合成图像,并为图像着色,以及其他任务。我们研究了三种不同类型的模型的性能,即简单GAN, DC-GAN, BIG-GAN,它们在同一数据集(即斯坦福狗数据集)上生成不同的损失函数,提供了不同的结果。在本文中,我们使用初始分数研究了模型的性能,并跟踪了不同阶段(时代)的损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Various Generative Adversarial Network using Dog image Dataset
Generative Adversarial Network is a novel concept for a general purpose solution to Deep Fake Image generation. These networks learn mapping from input image to output image and also assign value in loss function for the same mapping. We demonstrate that this approach is effective to synthesize images from labelled images, and colorizing images, and other tasks. We have investigate performance of three different types of model i.e. simple GAN, DC-GAN, BIG-GAN, which have provided different results with generation of different loss function on the same dataset i.e. Stanford Dogs Dataset. In this paper, we have investigated the performance of models by using inception score and also track the loss function at different stages (epochs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信