电润湿的机电模型

Deng Huang, Fang Qian, Wenyao Zhang, Cunlu Zhao, Wenbo Li, Qiuwan Wang
{"title":"电润湿的机电模型","authors":"Deng Huang, Fang Qian, Wenyao Zhang, Cunlu Zhao, Wenbo Li, Qiuwan Wang","doi":"10.1115/mnhmt2019-4130","DOIUrl":null,"url":null,"abstract":"\n We present an electromechanical model for analysis of electrowetting by considering the balance between an electric force and a surface tension force acting on the contact line of three phases, namely the droplet (D) phase the substrate (S) phase and the ambiance (A) phase. We show that the electric force acting on the three-phase contact line generally is contributed by the Maxwell stresses at the ambiance-substrate (A-S) interface, the droplet-substrate (D-S) interface, and the droplet-ambiance (D-A) interface. It was identified that the change of contact angle in electrowetting is essentially a consequence of the modification of the electric force on the contact line. For a classical electrowetting configuration, we show that the electric force on the contact line is mainly due to the Maxwell stresses at the D-A interface. Then we examine comprehensively how the electric force on the contact line varies with the permittivity difference between A and S phases, the contact angle and size. It was found that our model agrees excellently with the classical Yong-Lippmann (Y-L) model when the permittivities of A and S phases are equal, while the difference between the two increases as the permittivity difference between A and S phases increases. The electric force increases with the increase of the contact angle for a given droplet size. Our model approaches the Y-L model with the increasing droplet size. The findings are complementary to the classical Y-L model and provide new insights into the electrowetting.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Electromechanical Model for Electrowetting\",\"authors\":\"Deng Huang, Fang Qian, Wenyao Zhang, Cunlu Zhao, Wenbo Li, Qiuwan Wang\",\"doi\":\"10.1115/mnhmt2019-4130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present an electromechanical model for analysis of electrowetting by considering the balance between an electric force and a surface tension force acting on the contact line of three phases, namely the droplet (D) phase the substrate (S) phase and the ambiance (A) phase. We show that the electric force acting on the three-phase contact line generally is contributed by the Maxwell stresses at the ambiance-substrate (A-S) interface, the droplet-substrate (D-S) interface, and the droplet-ambiance (D-A) interface. It was identified that the change of contact angle in electrowetting is essentially a consequence of the modification of the electric force on the contact line. For a classical electrowetting configuration, we show that the electric force on the contact line is mainly due to the Maxwell stresses at the D-A interface. Then we examine comprehensively how the electric force on the contact line varies with the permittivity difference between A and S phases, the contact angle and size. It was found that our model agrees excellently with the classical Yong-Lippmann (Y-L) model when the permittivities of A and S phases are equal, while the difference between the two increases as the permittivity difference between A and S phases increases. The electric force increases with the increase of the contact angle for a given droplet size. Our model approaches the Y-L model with the increasing droplet size. The findings are complementary to the classical Y-L model and provide new insights into the electrowetting.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-4130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个机电模型来分析电润湿,该模型考虑了作用在三相接触线上的电作用力和表面张力之间的平衡,即液滴(D)相、衬底(S)相和环境(a)相。研究表明,作用在三相接触线上的电作用力通常由环境-衬底(A-S)界面、液滴-衬底(D-S)界面和液滴-环境(D-A)界面上的麦克斯韦应力贡献。结果表明,电润湿过程中接触角的变化本质上是接触线上电作用力变化的结果。对于经典的电润湿结构,我们表明接触线上的电作用力主要是由于D-A界面上的麦克斯韦应力。然后,我们全面研究了接触线上的电作用力如何随A相和S相介电常数差,接触角和尺寸而变化。当A相和S相的介电常数相等时,我们的模型与经典的Yong-Lippmann (Y-L)模型非常吻合,两者之间的差值随着A相和S相介电常数差值的增大而增大。对于给定的液滴尺寸,电磁力随接触角的增大而增大。随着液滴尺寸的增大,我们的模型接近于Y-L模型。这些发现是对经典Y-L模型的补充,并为电润湿提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Electromechanical Model for Electrowetting
We present an electromechanical model for analysis of electrowetting by considering the balance between an electric force and a surface tension force acting on the contact line of three phases, namely the droplet (D) phase the substrate (S) phase and the ambiance (A) phase. We show that the electric force acting on the three-phase contact line generally is contributed by the Maxwell stresses at the ambiance-substrate (A-S) interface, the droplet-substrate (D-S) interface, and the droplet-ambiance (D-A) interface. It was identified that the change of contact angle in electrowetting is essentially a consequence of the modification of the electric force on the contact line. For a classical electrowetting configuration, we show that the electric force on the contact line is mainly due to the Maxwell stresses at the D-A interface. Then we examine comprehensively how the electric force on the contact line varies with the permittivity difference between A and S phases, the contact angle and size. It was found that our model agrees excellently with the classical Yong-Lippmann (Y-L) model when the permittivities of A and S phases are equal, while the difference between the two increases as the permittivity difference between A and S phases increases. The electric force increases with the increase of the contact angle for a given droplet size. Our model approaches the Y-L model with the increasing droplet size. The findings are complementary to the classical Y-L model and provide new insights into the electrowetting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信