{"title":"医学图像检索:用户搜索目标的多元回归模型","authors":"Yue Li, Chia-Hung Wei","doi":"10.1109/ICMLC.2011.6016984","DOIUrl":null,"url":null,"abstract":"Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Medical image retrieval: Multiple regression models for user's search target\",\"authors\":\"Yue Li, Chia-Hung Wei\",\"doi\":\"10.1109/ICMLC.2011.6016984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Medical image retrieval: Multiple regression models for user's search target
Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.