医学图像检索:用户搜索目标的多元回归模型

Yue Li, Chia-Hung Wei
{"title":"医学图像检索:用户搜索目标的多元回归模型","authors":"Yue Li, Chia-Hung Wei","doi":"10.1109/ICMLC.2011.6016984","DOIUrl":null,"url":null,"abstract":"Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Medical image retrieval: Multiple regression models for user's search target\",\"authors\":\"Yue Li, Chia-Hung Wei\",\"doi\":\"10.1109/ICMLC.2011.6016984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

乳腺癌一直是全球女性的主要癌症之一。医院和筛查中心生成了大量的数字乳房x光片。这些数字乳房x光片可以进一步用于医学专业人员的学习和研究。基于内容的图像检索是指使用来自图像本身的信息检索内容与查询示例相似的图像。相关性反馈表达了用户的搜索目标,可以用来弥补语义差距,提高CBIR系统的性能。本研究提出了一种相关反馈学习的学习方法,该方法通过建立多个逻辑回归模型来泛化分类问题,并提供类隶属度的概率估计。在构建模型时,利用相关反馈作为训练数据,利用IRLS方法估计回归模型的参数并计算最大似然。逻辑回归模型被单独创建。逻辑回归模型拟合后,通过拟合优度统计量选择判别特征。这些鉴别特征的权重可以根据它们对最大似然的个人贡献来分配。因此,可以获得数据库中每个图像的相关类的隶属性的概率。实验结果表明,通过5轮相关反馈迭代,所提出的学习方法可以有效地将平均精度从30%提高到65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical image retrieval: Multiple regression models for user's search target
Breast cancer has been one of leading cancers in women around the world. A great number of digital mammograms are generated in hospitals and screening centers. Those digital mammograms can further be used for study and research by medical professionals. Content-based image retrieval refers to the retrieval of images whose contents are similar to a query example, using information derived from the images themselves. Relevance feedback, expressing the user's search target, can be used to bridge the semantic gap and improve the performance of CBIR systems. This study proposes a learning method for relevance feedback learning, which develops multiple logistic regression models to generalize the classification problem and provide an estimate of probability of class membership. To build the model, relevance feedback is utilized as the training data and the IRLS method is applied to estimate the parameters of the regression model and compute the maximum likelihood. Logistic regression models are created individually. After logistic regression models are fitted, discriminating features are selected by the measure of goodness of fit statistics. The weights of those discriminating features can be assigned according to their individual contributions to the maximum likelihood. The probability of the membership of the relevant class can therefore be obtained for each image of the database. Experimental results show that the proposed learning method can effectively improve the average precision from 30% to 65% through five iterations of relevance feedback rounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信