语音信号自动分割中滤波器组平均能量距离的比较研究

G. Ananthakrishna, H. G. Ranjani, A. Ramakrishnan
{"title":"语音信号自动分割中滤波器组平均能量距离的比较研究","authors":"G. Ananthakrishna, H. G. Ranjani, A. Ramakrishnan","doi":"10.1109/ICSCN.2007.350670","DOIUrl":null,"url":null,"abstract":"This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Study of Filter-Bank Mean-Energy Distance for Automated Segmentation of Speech Signals\",\"authors\":\"G. Ananthakrishna, H. G. Ranjani, A. Ramakrishnan\",\"doi\":\"10.1109/ICSCN.2007.350670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于连续时变信号的语音自动分割方法,取代了传统的短时平稳模型。它已经表明,这种表示给出了相当的,如果不是稍微更好的结果比其他技术的自动分割。提出了“巴赫”(音乐半音阶)频率标度滤波器组的一种公式。在此模型下,对Mel、Bark和Bach三种尺度滤波器组的性能进行了比较研究。初步结果表明,在人工分割数据的20毫秒内,匹配率高达80%,不需要任何文本内容信息,也不需要任何语言依赖。“巴赫”滤波器被认为略微优于其他滤波器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Filter-Bank Mean-Energy Distance for Automated Segmentation of Speech Signals
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信