用三连音丢失法鉴定西班牙语的说话人

Emmanuel Maqueda, Javier Alvarez, Iván V. Meza
{"title":"用三连音丢失法鉴定西班牙语的说话人","authors":"Emmanuel Maqueda, Javier Alvarez, Iván V. Meza","doi":"10.52591/lxai2020121210","DOIUrl":null,"url":null,"abstract":"This work explores the use of a triplet loss deep network setting for the forensic identification of speakers in Spanish. Within the framework, we train a convolutional network to produce vector representations of speech spectrogram slices. Then we test how similar these vectors are for a given speaker and how dissimilar are compared with other speakers. Based on these metrics we propose the calculation of the Likelihood Radio which is a cornerstone for forensic identification.","PeriodicalId":301818,"journal":{"name":"LatinX in AI at Neural Information Processing Systems Conference 2020","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards forensic speaker identification in Spanish using triplet loss\",\"authors\":\"Emmanuel Maqueda, Javier Alvarez, Iván V. Meza\",\"doi\":\"10.52591/lxai2020121210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores the use of a triplet loss deep network setting for the forensic identification of speakers in Spanish. Within the framework, we train a convolutional network to produce vector representations of speech spectrogram slices. Then we test how similar these vectors are for a given speaker and how dissimilar are compared with other speakers. Based on these metrics we propose the calculation of the Likelihood Radio which is a cornerstone for forensic identification.\",\"PeriodicalId\":301818,\"journal\":{\"name\":\"LatinX in AI at Neural Information Processing Systems Conference 2020\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at Neural Information Processing Systems Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai2020121210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at Neural Information Processing Systems Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai2020121210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作探讨了使用三联体丢失深度网络设置法医鉴定的发言者在西班牙语。在该框架内,我们训练了一个卷积网络来生成语音谱图切片的矢量表示。然后我们测试这些向量对于给定说话者的相似程度,以及与其他说话者的不同程度。基于这些指标,我们提出了似然无线电的计算,这是法医鉴定的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards forensic speaker identification in Spanish using triplet loss
This work explores the use of a triplet loss deep network setting for the forensic identification of speakers in Spanish. Within the framework, we train a convolutional network to produce vector representations of speech spectrogram slices. Then we test how similar these vectors are for a given speaker and how dissimilar are compared with other speakers. Based on these metrics we propose the calculation of the Likelihood Radio which is a cornerstone for forensic identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信