RuBERT嵌入在社交媒体用户帖子分类任务中的应用

V. Oliseenko, M. Abramov
{"title":"RuBERT嵌入在社交媒体用户帖子分类任务中的应用","authors":"V. Oliseenko, M. Abramov","doi":"10.1109/scm55405.2022.9794844","DOIUrl":null,"url":null,"abstract":"This paper presents models for solving the problem of multiclass classification of user posts in a social media. These models are based on embeddings extracted from messages using the RuBert language model and a fully connected neural network built over it. The models presented are compared to a baseline model using long-term short-term memory neurons (LSTM). The results will improve the accuracy of the classification posts, which in turn will improve the accuracy of assessing the psychological characteristics users.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RuBERT Embeddings in the Task of Classifying User Posts on a Social Media\",\"authors\":\"V. Oliseenko, M. Abramov\",\"doi\":\"10.1109/scm55405.2022.9794844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents models for solving the problem of multiclass classification of user posts in a social media. These models are based on embeddings extracted from messages using the RuBert language model and a fully connected neural network built over it. The models presented are compared to a baseline model using long-term short-term memory neurons (LSTM). The results will improve the accuracy of the classification posts, which in turn will improve the accuracy of assessing the psychological characteristics users.\",\"PeriodicalId\":162457,\"journal\":{\"name\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scm55405.2022.9794844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了解决社交媒体中用户帖子的多类分类问题的模型。这些模型是基于使用RuBert语言模型从消息中提取的嵌入和在其上构建的全连接神经网络。所提出的模型与使用长短期记忆神经元(LSTM)的基线模型进行了比较。研究结果将提高分类帖子的准确性,进而提高评估用户心理特征的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RuBERT Embeddings in the Task of Classifying User Posts on a Social Media
This paper presents models for solving the problem of multiclass classification of user posts in a social media. These models are based on embeddings extracted from messages using the RuBert language model and a fully connected neural network built over it. The models presented are compared to a baseline model using long-term short-term memory neurons (LSTM). The results will improve the accuracy of the classification posts, which in turn will improve the accuracy of assessing the psychological characteristics users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信