评价错误率高的稀疏多元函数恢复

E. Kaltofen, Zhengfeng Yang
{"title":"评价错误率高的稀疏多元函数恢复","authors":"E. Kaltofen, Zhengfeng Yang","doi":"10.1145/2608628.2608637","DOIUrl":null,"url":null,"abstract":"In [Kaltofen and Yang, Proc. ISSAC 2013] we have generalized algebraic error-correcting decoding to multivariate sparse rational function interpolation from evaluations that can be numerically inaccurate and where several evaluations can have severe errors (\"outliers\"). Here we present a different algorithm that can interpolate a sparse multivariate rational function from evaluations where the error rate is 1/q for any q > 2, which our ISSAC 2013 algorithm could not handle. When implemented as a numerical algorithm we can, for instance, reconstruct a fraction of trinomials of degree 15 in 50 variables with non-outlier evaluations of relative noise as large as 10-7 and where as much as 1/4 of the 14717 evaluations are outliers with relative error as small as 0.01 (large outliers are easily located by our method).\n For the algorithm with exact arithmetic and exact values at non-erroneous points, we provide a proof that for random evaluations one can avoid quadratic oversampling. Our argument already applies to our original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi, Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero coefficients in a sparse candidate ansatz one only needs T +O(1) evaluations rather than the proven O(T2) (cf. Candès and Tao sparse sensing). Here we finally can give the probabilistic analysis for this fact.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Sparse multivariate function recovery with a high error rate in the evaluations\",\"authors\":\"E. Kaltofen, Zhengfeng Yang\",\"doi\":\"10.1145/2608628.2608637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [Kaltofen and Yang, Proc. ISSAC 2013] we have generalized algebraic error-correcting decoding to multivariate sparse rational function interpolation from evaluations that can be numerically inaccurate and where several evaluations can have severe errors (\\\"outliers\\\"). Here we present a different algorithm that can interpolate a sparse multivariate rational function from evaluations where the error rate is 1/q for any q > 2, which our ISSAC 2013 algorithm could not handle. When implemented as a numerical algorithm we can, for instance, reconstruct a fraction of trinomials of degree 15 in 50 variables with non-outlier evaluations of relative noise as large as 10-7 and where as much as 1/4 of the 14717 evaluations are outliers with relative error as small as 0.01 (large outliers are easily located by our method).\\n For the algorithm with exact arithmetic and exact values at non-erroneous points, we provide a proof that for random evaluations one can avoid quadratic oversampling. Our argument already applies to our original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi, Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero coefficients in a sparse candidate ansatz one only needs T +O(1) evaluations rather than the proven O(T2) (cf. Candès and Tao sparse sensing). Here we finally can give the probabilistic analysis for this fact.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在[Kaltofen和Yang, Proc. ISSAC 2013]中,我们将代数错误纠正解码推广到多元稀疏有理函数插值,这些插值来自可能在数值上不准确的评估,其中几个评估可能有严重的错误(“异常值”)。在这里,我们提出了一种不同的算法,可以从错误率为1/q的评估中插值一个稀疏的多元理性函数,对于任何q > 2,我们的ISSAC 2013算法无法处理。例如,当作为数值算法实现时,我们可以重建50个变量中15度三项式的一小部分,其相对噪声的非离群值评估高达10-7,其中14717个评估中多达1/4是相对误差小至0.01的离群值(通过我们的方法很容易找到大的离群值)。对于具有精确算术和精确值的非错误点算法,我们证明了对于随机求值可以避免二次过采样。我们的论点已经适用于我们最初的2007年稀疏有理函数插值算法[Kaltofen, Yang和Zhi, Proc. SNC 2007],我们在实验中观察到,对于稀疏候选ansatz中的T个未知非零系数,只需要T +O(1)次评估,而不是证明的O(T2)次评估(参见cand和Tao稀疏感知)。这里我们终于可以给出这个事实的概率分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse multivariate function recovery with a high error rate in the evaluations
In [Kaltofen and Yang, Proc. ISSAC 2013] we have generalized algebraic error-correcting decoding to multivariate sparse rational function interpolation from evaluations that can be numerically inaccurate and where several evaluations can have severe errors ("outliers"). Here we present a different algorithm that can interpolate a sparse multivariate rational function from evaluations where the error rate is 1/q for any q > 2, which our ISSAC 2013 algorithm could not handle. When implemented as a numerical algorithm we can, for instance, reconstruct a fraction of trinomials of degree 15 in 50 variables with non-outlier evaluations of relative noise as large as 10-7 and where as much as 1/4 of the 14717 evaluations are outliers with relative error as small as 0.01 (large outliers are easily located by our method). For the algorithm with exact arithmetic and exact values at non-erroneous points, we provide a proof that for random evaluations one can avoid quadratic oversampling. Our argument already applies to our original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi, Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero coefficients in a sparse candidate ansatz one only needs T +O(1) evaluations rather than the proven O(T2) (cf. Candès and Tao sparse sensing). Here we finally can give the probabilistic analysis for this fact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信