{"title":"多原元分层立体系统","authors":"S. B. Marapane, M. Trivedi","doi":"10.1109/CVPR.1992.223144","DOIUrl":null,"url":null,"abstract":"A computational framework for an accurate, robust, and efficient stereo approach is developed. Most of the deficiencies prevailing in current computational models of stereo can be attributed to their use of a single, typically edge-element-based, primitive for stereo analysis and to their use of a single-level control strategy. The multi-primitive hierarchical (MPH) framework for stereo analysis presented is directed toward overcoming these deficiencies. In the MPH model, stereo analysis is performed in multiple stages, incorporating multiple primitives and utilizing a hierarchical control strategy. The higher levels of the hierarchical system are based on primitives containing more semantic information, and the results of stereo analysis at higher levels are used for guidance at the lower levels. It is shown that such a stereo system is superior to a single-level, single-primitive system.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-primitive hierarchical (MPH) stereo system\",\"authors\":\"S. B. Marapane, M. Trivedi\",\"doi\":\"10.1109/CVPR.1992.223144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational framework for an accurate, robust, and efficient stereo approach is developed. Most of the deficiencies prevailing in current computational models of stereo can be attributed to their use of a single, typically edge-element-based, primitive for stereo analysis and to their use of a single-level control strategy. The multi-primitive hierarchical (MPH) framework for stereo analysis presented is directed toward overcoming these deficiencies. In the MPH model, stereo analysis is performed in multiple stages, incorporating multiple primitives and utilizing a hierarchical control strategy. The higher levels of the hierarchical system are based on primitives containing more semantic information, and the results of stereo analysis at higher levels are used for guidance at the lower levels. It is shown that such a stereo system is superior to a single-level, single-primitive system.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational framework for an accurate, robust, and efficient stereo approach is developed. Most of the deficiencies prevailing in current computational models of stereo can be attributed to their use of a single, typically edge-element-based, primitive for stereo analysis and to their use of a single-level control strategy. The multi-primitive hierarchical (MPH) framework for stereo analysis presented is directed toward overcoming these deficiencies. In the MPH model, stereo analysis is performed in multiple stages, incorporating multiple primitives and utilizing a hierarchical control strategy. The higher levels of the hierarchical system are based on primitives containing more semantic information, and the results of stereo analysis at higher levels are used for guidance at the lower levels. It is shown that such a stereo system is superior to a single-level, single-primitive system.<>