CAT-Net:用于图像拼接检测和定位的压缩伪影跟踪网络

Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, Heung-Kyu Lee
{"title":"CAT-Net:用于图像拼接检测和定位的压缩伪影跟踪网络","authors":"Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, Heung-Kyu Lee","doi":"10.1109/WACV48630.2021.00042","DOIUrl":null,"url":null,"abstract":"Detecting and localizing image splicing has become essential to fight against malicious forgery. A major challenge to localize spliced areas is to discriminate between authentic and tampered regions with intrinsic properties such as compression artifacts. We propose CAT-Net, an end-to-end fully convolutional neural network including RGB and DCT streams, to learn forensic features of compression artifacts on RGB and DCT domains jointly. Each stream considers multiple resolutions to deal with spliced object’s various shapes and sizes. The DCT stream is pretrained on double JPEG detection to utilize JPEG artifacts. The proposed method outperforms state-of-the-art neural networks for localizing spliced regions in JPEG or non-JPEG images.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"CAT-Net: Compression Artifact Tracing Network for Detection and Localization of Image Splicing\",\"authors\":\"Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, Heung-Kyu Lee\",\"doi\":\"10.1109/WACV48630.2021.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting and localizing image splicing has become essential to fight against malicious forgery. A major challenge to localize spliced areas is to discriminate between authentic and tampered regions with intrinsic properties such as compression artifacts. We propose CAT-Net, an end-to-end fully convolutional neural network including RGB and DCT streams, to learn forensic features of compression artifacts on RGB and DCT domains jointly. Each stream considers multiple resolutions to deal with spliced object’s various shapes and sizes. The DCT stream is pretrained on double JPEG detection to utilize JPEG artifacts. The proposed method outperforms state-of-the-art neural networks for localizing spliced regions in JPEG or non-JPEG images.\",\"PeriodicalId\":236300,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV48630.2021.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

检测和定位图像拼接已成为打击恶意伪造的关键。定位拼接区域的一个主要挑战是区分具有固有属性(如压缩伪影)的真实区域和篡改区域。我们提出了CAT-Net,一个包含RGB和DCT流的端到端全卷积神经网络,来共同学习RGB和DCT域压缩伪影的取证特征。每个流考虑多种分辨率来处理拼接对象的各种形状和大小。DCT流在双JPEG检测上进行预训练,以利用JPEG伪影。该方法在定位JPEG或非JPEG图像中的拼接区域方面优于最先进的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAT-Net: Compression Artifact Tracing Network for Detection and Localization of Image Splicing
Detecting and localizing image splicing has become essential to fight against malicious forgery. A major challenge to localize spliced areas is to discriminate between authentic and tampered regions with intrinsic properties such as compression artifacts. We propose CAT-Net, an end-to-end fully convolutional neural network including RGB and DCT streams, to learn forensic features of compression artifacts on RGB and DCT domains jointly. Each stream considers multiple resolutions to deal with spliced object’s various shapes and sizes. The DCT stream is pretrained on double JPEG detection to utilize JPEG artifacts. The proposed method outperforms state-of-the-art neural networks for localizing spliced regions in JPEG or non-JPEG images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信