{"title":"白化大鼠暴露于应激和引入亮氨酸脑啡肽的非阿片类类似物在早期发病期的行为反应的特点","authors":"Timur Amirov, E. Sazonova","doi":"10.35177/1994-5191-2022-3-8","DOIUrl":null,"url":null,"abstract":"The authors studied behavioral reactions of 7-day and 30-day-old albino Wistar rats, exposed to intrauterine hypoxia as well as emotional-pain stress and were introduced peptides - non-opiate analogues of leu-enkephalins in the neonatal periods of ontogenesis. The authors found that exposure to intrauterine hypoxia as well as emotional-pain stumuli led to slowdown of sensor-motor reflexes maturation in 7-day-old animals (duration of turning in the test \"Negative geotropism\" increased by 66 %); 30-day-old animals in this experimental group demonstrated increased anxiety and \"motor disinhibition\" in the tests \"Elevated plus-maze\" and \"Open field\". Daily introduction from the second to sixth day of life of 100 mkg/kg peptide NALE (H - Phe - D-Ala Gly - Phe - Leu - Arg - OH) practically neutralizes negative early and remote behavioral consequences of intrauterine hypoxia as well as neonatal emotional-pain stress. Neuroprotective effect is less significantly expressed during introduction of 100 mkg/kg of the peptide G (H - Phe - D-Ala - Gly - Phe - Leu - Gly - OH) from the second to sixth day of life, differing from NALE by replacement of C-ending aminoacid from Arg to Gly. Nitrogen oxide blockade by the accompanying introduction of L-NAME (50mg/kg) hinders the realization of both early (in 7-day-old animals), and remote (in 30-day-old animals) neuroprotective effects of peptide NALE.","PeriodicalId":396839,"journal":{"name":"Dalʹnevostočnyj medicinskij žurnal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peculiarities of behavioral reactions of albino rats exposed to stress and introduction of non-opiate analogues of leu-enkephalins in the early ontogenic periods\",\"authors\":\"Timur Amirov, E. Sazonova\",\"doi\":\"10.35177/1994-5191-2022-3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors studied behavioral reactions of 7-day and 30-day-old albino Wistar rats, exposed to intrauterine hypoxia as well as emotional-pain stress and were introduced peptides - non-opiate analogues of leu-enkephalins in the neonatal periods of ontogenesis. The authors found that exposure to intrauterine hypoxia as well as emotional-pain stumuli led to slowdown of sensor-motor reflexes maturation in 7-day-old animals (duration of turning in the test \\\"Negative geotropism\\\" increased by 66 %); 30-day-old animals in this experimental group demonstrated increased anxiety and \\\"motor disinhibition\\\" in the tests \\\"Elevated plus-maze\\\" and \\\"Open field\\\". Daily introduction from the second to sixth day of life of 100 mkg/kg peptide NALE (H - Phe - D-Ala Gly - Phe - Leu - Arg - OH) practically neutralizes negative early and remote behavioral consequences of intrauterine hypoxia as well as neonatal emotional-pain stress. Neuroprotective effect is less significantly expressed during introduction of 100 mkg/kg of the peptide G (H - Phe - D-Ala - Gly - Phe - Leu - Gly - OH) from the second to sixth day of life, differing from NALE by replacement of C-ending aminoacid from Arg to Gly. Nitrogen oxide blockade by the accompanying introduction of L-NAME (50mg/kg) hinders the realization of both early (in 7-day-old animals), and remote (in 30-day-old animals) neuroprotective effects of peptide NALE.\",\"PeriodicalId\":396839,\"journal\":{\"name\":\"Dalʹnevostočnyj medicinskij žurnal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalʹnevostočnyj medicinskij žurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35177/1994-5191-2022-3-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalʹnevostočnyj medicinskij žurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35177/1994-5191-2022-3-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Peculiarities of behavioral reactions of albino rats exposed to stress and introduction of non-opiate analogues of leu-enkephalins in the early ontogenic periods
The authors studied behavioral reactions of 7-day and 30-day-old albino Wistar rats, exposed to intrauterine hypoxia as well as emotional-pain stress and were introduced peptides - non-opiate analogues of leu-enkephalins in the neonatal periods of ontogenesis. The authors found that exposure to intrauterine hypoxia as well as emotional-pain stumuli led to slowdown of sensor-motor reflexes maturation in 7-day-old animals (duration of turning in the test "Negative geotropism" increased by 66 %); 30-day-old animals in this experimental group demonstrated increased anxiety and "motor disinhibition" in the tests "Elevated plus-maze" and "Open field". Daily introduction from the second to sixth day of life of 100 mkg/kg peptide NALE (H - Phe - D-Ala Gly - Phe - Leu - Arg - OH) practically neutralizes negative early and remote behavioral consequences of intrauterine hypoxia as well as neonatal emotional-pain stress. Neuroprotective effect is less significantly expressed during introduction of 100 mkg/kg of the peptide G (H - Phe - D-Ala - Gly - Phe - Leu - Gly - OH) from the second to sixth day of life, differing from NALE by replacement of C-ending aminoacid from Arg to Gly. Nitrogen oxide blockade by the accompanying introduction of L-NAME (50mg/kg) hinders the realization of both early (in 7-day-old animals), and remote (in 30-day-old animals) neuroprotective effects of peptide NALE.