标准化博弈中的收敛与振荡

E. Auriol, M. Benaïm
{"title":"标准化博弈中的收敛与振荡","authors":"E. Auriol, M. Benaïm","doi":"10.1051/EJESS:2001107","DOIUrl":null,"url":null,"abstract":"Auriol and Benaim (2000) studied in a model inspired by evolutionary game theory, how standards and norms emerge in decentralized econ- omies when there are two standards. They showed that the decentralized adoption process always converges toward a stable equilibrium (possibly an incompatibility one). This paper explores the robustness of Auriol and Benaim (2000) convergence results. It shows that with more than two standards the decentralized adoption process does not necessarily converge. It can oscillate and describe cycles.","PeriodicalId":352454,"journal":{"name":"European Journal of Economic and Social Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convergence and Oscillation in Standardization Games\",\"authors\":\"E. Auriol, M. Benaïm\",\"doi\":\"10.1051/EJESS:2001107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auriol and Benaim (2000) studied in a model inspired by evolutionary game theory, how standards and norms emerge in decentralized econ- omies when there are two standards. They showed that the decentralized adoption process always converges toward a stable equilibrium (possibly an incompatibility one). This paper explores the robustness of Auriol and Benaim (2000) convergence results. It shows that with more than two standards the decentralized adoption process does not necessarily converge. It can oscillate and describe cycles.\",\"PeriodicalId\":352454,\"journal\":{\"name\":\"European Journal of Economic and Social Systems\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Economic and Social Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EJESS:2001107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Economic and Social Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EJESS:2001107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Auriol和Benaim(2000)在进化博弈论的启发下研究了一个模型,当存在两种标准时,标准和规范如何在分散的经济中出现。他们表明,去中心化的采用过程总是趋向于一个稳定的平衡(可能是一个不兼容的平衡)。本文探讨了Auriol和Benaim(2000)收敛结果的鲁棒性。它表明,如果有两个以上的标准,去中心化的采用过程不一定会趋同。它可以振荡并描述周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and Oscillation in Standardization Games
Auriol and Benaim (2000) studied in a model inspired by evolutionary game theory, how standards and norms emerge in decentralized econ- omies when there are two standards. They showed that the decentralized adoption process always converges toward a stable equilibrium (possibly an incompatibility one). This paper explores the robustness of Auriol and Benaim (2000) convergence results. It shows that with more than two standards the decentralized adoption process does not necessarily converge. It can oscillate and describe cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信