在GPU上并行化Hilbert-Huang变换

Pulung Waskito, Shinobu Miwa, Y. Mitsukura, H. Nakajo
{"title":"在GPU上并行化Hilbert-Huang变换","authors":"Pulung Waskito, Shinobu Miwa, Y. Mitsukura, H. Nakajo","doi":"10.1109/IC-NC.2010.44","DOIUrl":null,"url":null,"abstract":"In this paper, we show parallel implementation of Hilbert-Huang Transform on GPU. This implementation focused on the reducing the computation complexity from O(N) on a single CPU to O(N/P log (N)) on GPU, as well as the use of 'shared-global' switching method to increase performance. Evaluation results show our single GPU implementation using Tesla C1060 achieves 29.0x speedup in best case, and a total of 7.1x speedup for all results when compared to a single Intel dual core CPU.","PeriodicalId":375145,"journal":{"name":"2010 First International Conference on Networking and Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Parallelizing Hilbert-Huang Transform on a GPU\",\"authors\":\"Pulung Waskito, Shinobu Miwa, Y. Mitsukura, H. Nakajo\",\"doi\":\"10.1109/IC-NC.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show parallel implementation of Hilbert-Huang Transform on GPU. This implementation focused on the reducing the computation complexity from O(N) on a single CPU to O(N/P log (N)) on GPU, as well as the use of 'shared-global' switching method to increase performance. Evaluation results show our single GPU implementation using Tesla C1060 achieves 29.0x speedup in best case, and a total of 7.1x speedup for all results when compared to a single Intel dual core CPU.\",\"PeriodicalId\":375145,\"journal\":{\"name\":\"2010 First International Conference on Networking and Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First International Conference on Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NC.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NC.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文给出了Hilbert-Huang变换在GPU上的并行实现。该实现侧重于将计算复杂度从单个CPU上的O(N)降低到GPU上的O(N/P log (N)),以及使用“全局共享”切换方法来提高性能。评估结果显示,我们使用Tesla C1060的单个GPU实现在最佳情况下实现了29.0倍的加速,与单个Intel双核CPU相比,所有结果的加速总和为7.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelizing Hilbert-Huang Transform on a GPU
In this paper, we show parallel implementation of Hilbert-Huang Transform on GPU. This implementation focused on the reducing the computation complexity from O(N) on a single CPU to O(N/P log (N)) on GPU, as well as the use of 'shared-global' switching method to increase performance. Evaluation results show our single GPU implementation using Tesla C1060 achieves 29.0x speedup in best case, and a total of 7.1x speedup for all results when compared to a single Intel dual core CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信