基于差分进化的多模态优化六种模因策略研究

Ferrante Neri, Matthew Todd
{"title":"基于差分进化的多模态优化六种模因策略研究","authors":"Ferrante Neri, Matthew Todd","doi":"10.1109/CEC55065.2022.9870221","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental study on memetic strategies to enhance the performance of population-based metaheuristics for multimodal optimisation. The purpose of this work is to devise some recommendations about algorithmic design to allow a successful combination of local search and niching techniques. Six memetic strategies are presented and tested over five population-based algorithms endowed with niching techniques. Experimental results clearly show that local search enhances the performance of the framework for multimodal optimisation in terms of both peak ratio and success rate. The most promising results are obtained by the variants that employ an archive that pre-selects the solutions undergoing local search thus avoiding computational waste. Furthermore, promising results are obtained by variants that reduce the exploitation pressure of the population-based framework by using a simulated annealing logic in the selection process, leaving the exploitation task to the local search.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study on Six Memetic Strategies for Multimodal Optimisation by Differential Evolution\",\"authors\":\"Ferrante Neri, Matthew Todd\",\"doi\":\"10.1109/CEC55065.2022.9870221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental study on memetic strategies to enhance the performance of population-based metaheuristics for multimodal optimisation. The purpose of this work is to devise some recommendations about algorithmic design to allow a successful combination of local search and niching techniques. Six memetic strategies are presented and tested over five population-based algorithms endowed with niching techniques. Experimental results clearly show that local search enhances the performance of the framework for multimodal optimisation in terms of both peak ratio and success rate. The most promising results are obtained by the variants that employ an archive that pre-selects the solutions undergoing local search thus avoiding computational waste. Furthermore, promising results are obtained by variants that reduce the exploitation pressure of the population-based framework by using a simulated annealing logic in the selection process, leaving the exploitation task to the local search.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对模因策略进行了实验研究,以提高基于种群的多模态优化元启发式算法的性能。这项工作的目的是设计一些关于算法设计的建议,以允许本地搜索和小生境技术的成功结合。提出了六种模因策略,并在五种基于种群的算法上进行了测试,并赋予了小生境技术。实验结果清楚地表明,局部搜索在峰值比和成功率方面都提高了框架的多模态优化性能。最有希望的结果是由使用存档的变体获得的,该存档可以预先选择进行局部搜索的解决方案,从而避免了计算浪费。此外,通过在选择过程中使用模拟退火逻辑来降低基于种群的框架的开发压力的变体,将开发任务留给局部搜索,获得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Six Memetic Strategies for Multimodal Optimisation by Differential Evolution
This paper presents an experimental study on memetic strategies to enhance the performance of population-based metaheuristics for multimodal optimisation. The purpose of this work is to devise some recommendations about algorithmic design to allow a successful combination of local search and niching techniques. Six memetic strategies are presented and tested over five population-based algorithms endowed with niching techniques. Experimental results clearly show that local search enhances the performance of the framework for multimodal optimisation in terms of both peak ratio and success rate. The most promising results are obtained by the variants that employ an archive that pre-selects the solutions undergoing local search thus avoiding computational waste. Furthermore, promising results are obtained by variants that reduce the exploitation pressure of the population-based framework by using a simulated annealing logic in the selection process, leaving the exploitation task to the local search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信