高分辨率均方根数据电能质量分类的特征提取与特征选择研究

A. Eisenmann, T. Streubel, K. Rudion
{"title":"高分辨率均方根数据电能质量分类的特征提取与特征选择研究","authors":"A. Eisenmann, T. Streubel, K. Rudion","doi":"10.1049/icp.2021.1392","DOIUrl":null,"url":null,"abstract":"This paper shows different state-of-the-art machine learning methods for structured data, applied to classification of power quality data sets. k-Nearest Neighbor, Support Vector Machine, Random Forest, XGBoost and LightGBM are chosen for comparison of classification of high resolution and root mean square data. Discrete wavelet transform and TsFresh are chosen for the pre-processing of the high-resolution data and the extraction of features. For feature selection, mutual information filtering, feature importance und sequential feature selection are tested. Special to this investigation is the use of both - highresolution waveform data (sample rate 5 kS/s) and root mean square data (20 ms). The input data were synthesized by mathematical equations. The highest score is achieved by the XGBoost classifier in combination with the LightGBM feature selector. Accuracy shows 97.71% for root mean square data and 98.96% for the high-resolution data. Furthermore, the results illustrate the dependency of the classification result on the data structure, feature extraction, feature selection and the classifier.","PeriodicalId":223615,"journal":{"name":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Investigation on Feature Extraction and Feature Selection for Power Quality Classification with High Resolution and RMS Data\",\"authors\":\"A. Eisenmann, T. Streubel, K. Rudion\",\"doi\":\"10.1049/icp.2021.1392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows different state-of-the-art machine learning methods for structured data, applied to classification of power quality data sets. k-Nearest Neighbor, Support Vector Machine, Random Forest, XGBoost and LightGBM are chosen for comparison of classification of high resolution and root mean square data. Discrete wavelet transform and TsFresh are chosen for the pre-processing of the high-resolution data and the extraction of features. For feature selection, mutual information filtering, feature importance und sequential feature selection are tested. Special to this investigation is the use of both - highresolution waveform data (sample rate 5 kS/s) and root mean square data (20 ms). The input data were synthesized by mathematical equations. The highest score is achieved by the XGBoost classifier in combination with the LightGBM feature selector. Accuracy shows 97.71% for root mean square data and 98.96% for the high-resolution data. Furthermore, the results illustrate the dependency of the classification result on the data structure, feature extraction, feature selection and the classifier.\",\"PeriodicalId\":223615,\"journal\":{\"name\":\"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文展示了结构化数据的不同的最先进的机器学习方法,应用于电能质量数据集的分类。选择k-最近邻、支持向量机、随机森林、XGBoost和LightGBM对高分辨率和均方根数据进行分类比较。采用离散小波变换和TsFresh对高分辨率数据进行预处理和特征提取。对特征选择进行了互信息滤波、特征重要性和顺序特征选择测试。这次调查的特别之处在于同时使用了高分辨率波形数据(采样率为5 kS/s)和均方根数据(20 ms)。输入数据通过数学方程进行综合。XGBoost分类器与LightGBM特征选择器结合使用可以获得最高分。均方根数据的准确率为97.71%,高分辨率数据的准确率为98.96%。进一步说明了分类结果与数据结构、特征提取、特征选择和分类器的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Investigation on Feature Extraction and Feature Selection for Power Quality Classification with High Resolution and RMS Data
This paper shows different state-of-the-art machine learning methods for structured data, applied to classification of power quality data sets. k-Nearest Neighbor, Support Vector Machine, Random Forest, XGBoost and LightGBM are chosen for comparison of classification of high resolution and root mean square data. Discrete wavelet transform and TsFresh are chosen for the pre-processing of the high-resolution data and the extraction of features. For feature selection, mutual information filtering, feature importance und sequential feature selection are tested. Special to this investigation is the use of both - highresolution waveform data (sample rate 5 kS/s) and root mean square data (20 ms). The input data were synthesized by mathematical equations. The highest score is achieved by the XGBoost classifier in combination with the LightGBM feature selector. Accuracy shows 97.71% for root mean square data and 98.96% for the high-resolution data. Furthermore, the results illustrate the dependency of the classification result on the data structure, feature extraction, feature selection and the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信