Helena R. Torres, Bruno Oliveira, Sandro Queirós, P. Morais, J. Fonseca, J. D’hooge, N. Rodrigues, J. Vilaça
{"title":"基于b样条显式活动曲面的三维CT图像肾脏分割","authors":"Helena R. Torres, Bruno Oliveira, Sandro Queirós, P. Morais, J. Fonseca, J. D’hooge, N. Rodrigues, J. Vilaça","doi":"10.1109/SeGAH.2016.7586276","DOIUrl":null,"url":null,"abstract":"In this manuscript, we propose to adapt the B-Spline Explicit Active Surfaces (BEAS) framework for semi-automatic kidney segmentation in computed tomography (CT) images. To study the best energy functional for kidney CT extraction, three different localized region-based energies were implemented within the BEAS framework, namely localized Chan-Vese, localized Yezzi, and signed localized Yezzi energies. Moreover, a novel gradient-based regularization term is proposed. The method was applied on 18 kidneys from 9 CT datasets, with different image properties. Several energy combinations were contrasted using surface-based comparison against ground truth meshes, assessing their accuracy and robustness against surface initialization. Overall, the hybrid energy functional combining the localized signed Yezzi energy with gradient-based regularization simultaneously showed the highest accuracy and the lowest sensitivity to the initialization. Volumetric analysis demonstrated the feasibility of the method from a clinical point of view, with similar reproducibility to manual observers.","PeriodicalId":138418,"journal":{"name":"2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kidney segmentation in 3D CT images using B-Spline Explicit Active Surfaces\",\"authors\":\"Helena R. Torres, Bruno Oliveira, Sandro Queirós, P. Morais, J. Fonseca, J. D’hooge, N. Rodrigues, J. Vilaça\",\"doi\":\"10.1109/SeGAH.2016.7586276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we propose to adapt the B-Spline Explicit Active Surfaces (BEAS) framework for semi-automatic kidney segmentation in computed tomography (CT) images. To study the best energy functional for kidney CT extraction, three different localized region-based energies were implemented within the BEAS framework, namely localized Chan-Vese, localized Yezzi, and signed localized Yezzi energies. Moreover, a novel gradient-based regularization term is proposed. The method was applied on 18 kidneys from 9 CT datasets, with different image properties. Several energy combinations were contrasted using surface-based comparison against ground truth meshes, assessing their accuracy and robustness against surface initialization. Overall, the hybrid energy functional combining the localized signed Yezzi energy with gradient-based regularization simultaneously showed the highest accuracy and the lowest sensitivity to the initialization. Volumetric analysis demonstrated the feasibility of the method from a clinical point of view, with similar reproducibility to manual observers.\",\"PeriodicalId\":138418,\"journal\":{\"name\":\"2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SeGAH.2016.7586276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeGAH.2016.7586276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kidney segmentation in 3D CT images using B-Spline Explicit Active Surfaces
In this manuscript, we propose to adapt the B-Spline Explicit Active Surfaces (BEAS) framework for semi-automatic kidney segmentation in computed tomography (CT) images. To study the best energy functional for kidney CT extraction, three different localized region-based energies were implemented within the BEAS framework, namely localized Chan-Vese, localized Yezzi, and signed localized Yezzi energies. Moreover, a novel gradient-based regularization term is proposed. The method was applied on 18 kidneys from 9 CT datasets, with different image properties. Several energy combinations were contrasted using surface-based comparison against ground truth meshes, assessing their accuracy and robustness against surface initialization. Overall, the hybrid energy functional combining the localized signed Yezzi energy with gradient-based regularization simultaneously showed the highest accuracy and the lowest sensitivity to the initialization. Volumetric analysis demonstrated the feasibility of the method from a clinical point of view, with similar reproducibility to manual observers.