传感器网络的分布式变分稀疏贝叶斯学习

Thomas Buchgraber, D. Shutin
{"title":"传感器网络的分布式变分稀疏贝叶斯学习","authors":"Thomas Buchgraber, D. Shutin","doi":"10.1109/MLSP.2012.6349800","DOIUrl":null,"url":null,"abstract":"In this work we present a distributed sparse Bayesian learning (dSBL) regression algorithm. It can be used for collaborative sparse estimation of spatial functions in wireless sensor networks (WSNs). The sensor measurements are modeled as a weighted superposition of basis functions. When kernels are used, the algorithm forms a distributed version of the relevance vector machine. The proposed method is based on a combination of variational inference and loopy belief propagation, where data is only communicated between neighboring nodes without the need for a fusion center. We show that for tree structured networks, under certain parameterization, dSBL coincides with centralized sparse Bayesian learning (cSBL). For general loopy networks, dSBL and cSBL are differend, yet simulations show much faster convergence over the variational inference iterations at similar sparsity and mean squared error performance. Furthermore, compared to other sparse distributed regression methods, our method does not require any cross-tuning of sparsity parameters.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed variational sparse Bayesian learning for sensor networks\",\"authors\":\"Thomas Buchgraber, D. Shutin\",\"doi\":\"10.1109/MLSP.2012.6349800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a distributed sparse Bayesian learning (dSBL) regression algorithm. It can be used for collaborative sparse estimation of spatial functions in wireless sensor networks (WSNs). The sensor measurements are modeled as a weighted superposition of basis functions. When kernels are used, the algorithm forms a distributed version of the relevance vector machine. The proposed method is based on a combination of variational inference and loopy belief propagation, where data is only communicated between neighboring nodes without the need for a fusion center. We show that for tree structured networks, under certain parameterization, dSBL coincides with centralized sparse Bayesian learning (cSBL). For general loopy networks, dSBL and cSBL are differend, yet simulations show much faster convergence over the variational inference iterations at similar sparsity and mean squared error performance. Furthermore, compared to other sparse distributed regression methods, our method does not require any cross-tuning of sparsity parameters.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们提出了一个分布式稀疏贝叶斯学习(dSBL)回归算法。该方法可用于无线传感器网络中空间函数的协同稀疏估计。传感器测量数据被建模为基函数的加权叠加。当使用核函数时,该算法形成了一个分布式版本的相关向量机。该方法采用变分推理和循环信念传播相结合的方法,数据仅在相邻节点之间进行通信,不需要融合中心。研究表明,对于树状结构网络,在一定参数化条件下,dSBL与集中式稀疏贝叶斯学习(cSBL)重合。对于一般的环路网络,dSBL和cSBL是不同的,但仿真表明,在相似的稀疏性和均方误差性能下,变分推理迭代的收敛速度要快得多。此外,与其他稀疏分布回归方法相比,我们的方法不需要任何稀疏度参数的交叉调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed variational sparse Bayesian learning for sensor networks
In this work we present a distributed sparse Bayesian learning (dSBL) regression algorithm. It can be used for collaborative sparse estimation of spatial functions in wireless sensor networks (WSNs). The sensor measurements are modeled as a weighted superposition of basis functions. When kernels are used, the algorithm forms a distributed version of the relevance vector machine. The proposed method is based on a combination of variational inference and loopy belief propagation, where data is only communicated between neighboring nodes without the need for a fusion center. We show that for tree structured networks, under certain parameterization, dSBL coincides with centralized sparse Bayesian learning (cSBL). For general loopy networks, dSBL and cSBL are differend, yet simulations show much faster convergence over the variational inference iterations at similar sparsity and mean squared error performance. Furthermore, compared to other sparse distributed regression methods, our method does not require any cross-tuning of sparsity parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信