基于遗传算法的重叠图像鲁棒运动估计

Yingchun Zhang, Juan Cao, Bohong Su
{"title":"基于遗传算法的重叠图像鲁棒运动估计","authors":"Yingchun Zhang, Juan Cao, Bohong Su","doi":"10.1109/ICNC.2012.6234722","DOIUrl":null,"url":null,"abstract":"We propose a robust method based on genetic algorithm for the estimation of the motion between two successive overlapping images, a classic problem in computer vision. To calculate the motion parameters encoded as a chromosome, we employed roulette wheel selection and total arithmetic crossover and developed a novel adaptive mutation operator. The experimental results show that the normalized registration error of the final solution exhibits a significant improvement over those obtained by direct search approaches to such problems. Also, in contrast to other popular approaches such as the least-squares and Levenberg-Marquardt algorithm, the proposed method can escape from local extrema and can potentially produce the global optimum.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust motion estimation for overlapping images via genetic algorithm\",\"authors\":\"Yingchun Zhang, Juan Cao, Bohong Su\",\"doi\":\"10.1109/ICNC.2012.6234722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust method based on genetic algorithm for the estimation of the motion between two successive overlapping images, a classic problem in computer vision. To calculate the motion parameters encoded as a chromosome, we employed roulette wheel selection and total arithmetic crossover and developed a novel adaptive mutation operator. The experimental results show that the normalized registration error of the final solution exhibits a significant improvement over those obtained by direct search approaches to such problems. Also, in contrast to other popular approaches such as the least-squares and Levenberg-Marquardt algorithm, the proposed method can escape from local extrema and can potentially produce the global optimum.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于遗传算法的鲁棒方法来估计两个连续重叠图像之间的运动,这是计算机视觉中的一个经典问题。为了计算编码为染色体的运动参数,我们采用了轮盘选择和全算法交叉,并开发了一种新的自适应突变算子。实验结果表明,与直接搜索方法相比,最终解的归一化配准误差有明显改善。此外,与其他流行的方法如最小二乘和Levenberg-Marquardt算法相比,所提出的方法可以摆脱局部极值,并有可能产生全局最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust motion estimation for overlapping images via genetic algorithm
We propose a robust method based on genetic algorithm for the estimation of the motion between two successive overlapping images, a classic problem in computer vision. To calculate the motion parameters encoded as a chromosome, we employed roulette wheel selection and total arithmetic crossover and developed a novel adaptive mutation operator. The experimental results show that the normalized registration error of the final solution exhibits a significant improvement over those obtained by direct search approaches to such problems. Also, in contrast to other popular approaches such as the least-squares and Levenberg-Marquardt algorithm, the proposed method can escape from local extrema and can potentially produce the global optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信