基于静态启发式的恶意网页识别

C. Seifert, Ian Welch, P. Komisarczuk
{"title":"基于静态启发式的恶意网页识别","authors":"C. Seifert, Ian Welch, P. Komisarczuk","doi":"10.1109/ATNAC.2008.4783302","DOIUrl":null,"url":null,"abstract":"Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Identification of Malicious Web Pages with Static Heuristics\",\"authors\":\"C. Seifert, Ian Welch, P. Komisarczuk\",\"doi\":\"10.1109/ATNAC.2008.4783302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.\",\"PeriodicalId\":143803,\"journal\":{\"name\":\"2008 Australasian Telecommunication Networks and Applications Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Australasian Telecommunication Networks and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATNAC.2008.4783302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

近年来,针对web浏览器发起客户端攻击的恶意网页已成为日益严重的问题。高交互客户端蜜罐是一种安全设备,可以检测网络上的这些恶意网页。然而,高交互的客户端蜜罐是资源密集型的,并且很容易错过攻击。本文提出了一种检测恶意网页的新分类方法,该方法包括检查初始HTTP响应和HTML代码的底层静态属性。由于恶意网页从远程资源导入漏洞并隐藏漏洞代码,因此可以使用描述这些行为的静态属性来识别大多数恶意网页。将高交互客户端蜜罐和这种新的分类方法结合到一个混合系统中,可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Malicious Web Pages with Static Heuristics
Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信