多通道参数估计快速块矩阵逆

S. Marple, P. Corbell, M. Rangaswamy
{"title":"多通道参数估计快速块矩阵逆","authors":"S. Marple, P. Corbell, M. Rangaswamy","doi":"10.1109/ICASSP.2007.366441","DOIUrl":null,"url":null,"abstract":"The optimal (adaptive) linear combiner (beamformer) weights for a sensor array are expressed in terms of the inverse of the multi-channel (MC) covariance matrix. Also, minimum variance (Capon) spectral estimators of the sensor array also depend on the same inverse. Rather than form an estimate of the covariance matrix directly from the available data and inverting it, an alternative direct estimate of the inverse may be obtained by forming parametric MC linear prediction estimates and then expressing the inverse in terms of these parametric MC estimates. The resulting parametric estimate of the inverse is typically more accurate than inverting the estimate of the covariance matrix. This paper reveals the structure of the the inverse of the covariance matrix for the MC version of the covariance least squares linear prediction algorithm. The inverse structure involves products of triangular block MC Toeplitz matrices, which leads to fast computational solutions. An example of a fast MC minimum variance spectral estimator illustrates this exploitation.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-Channel Parametric Estimator Fast Block Matrix Inverses\",\"authors\":\"S. Marple, P. Corbell, M. Rangaswamy\",\"doi\":\"10.1109/ICASSP.2007.366441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal (adaptive) linear combiner (beamformer) weights for a sensor array are expressed in terms of the inverse of the multi-channel (MC) covariance matrix. Also, minimum variance (Capon) spectral estimators of the sensor array also depend on the same inverse. Rather than form an estimate of the covariance matrix directly from the available data and inverting it, an alternative direct estimate of the inverse may be obtained by forming parametric MC linear prediction estimates and then expressing the inverse in terms of these parametric MC estimates. The resulting parametric estimate of the inverse is typically more accurate than inverting the estimate of the covariance matrix. This paper reveals the structure of the the inverse of the covariance matrix for the MC version of the covariance least squares linear prediction algorithm. The inverse structure involves products of triangular block MC Toeplitz matrices, which leads to fast computational solutions. An example of a fast MC minimum variance spectral estimator illustrates this exploitation.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2007.366441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2007.366441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

传感器阵列的最优(自适应)线性组合器(波束形成器)权重用多通道(MC)协方差矩阵的逆表示。此外,传感器阵列的最小方差(Capon)谱估计也依赖于相同的逆。与其直接从可用数据中形成协方差矩阵的估计并对其求逆,不如通过形成参数MC线性预测估计,然后用这些参数MC估计来表示逆,从而获得逆的另一种直接估计。得到的逆的参数估计通常比反求协方差矩阵的估计更准确。本文揭示了协方差最小二乘线性预测算法MC版的协方差矩阵逆的结构。逆结构涉及三角块MC Toeplitz矩阵的乘积,从而导致快速的计算解。一个快速MC最小方差谱估计的例子说明了这种利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Channel Parametric Estimator Fast Block Matrix Inverses
The optimal (adaptive) linear combiner (beamformer) weights for a sensor array are expressed in terms of the inverse of the multi-channel (MC) covariance matrix. Also, minimum variance (Capon) spectral estimators of the sensor array also depend on the same inverse. Rather than form an estimate of the covariance matrix directly from the available data and inverting it, an alternative direct estimate of the inverse may be obtained by forming parametric MC linear prediction estimates and then expressing the inverse in terms of these parametric MC estimates. The resulting parametric estimate of the inverse is typically more accurate than inverting the estimate of the covariance matrix. This paper reveals the structure of the the inverse of the covariance matrix for the MC version of the covariance least squares linear prediction algorithm. The inverse structure involves products of triangular block MC Toeplitz matrices, which leads to fast computational solutions. An example of a fast MC minimum variance spectral estimator illustrates this exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信