能源强度神经网络自适应贡献评价与预测模型

Xiran Wang, Kai Yang, Xuan Yang, Peng Zhu
{"title":"能源强度神经网络自适应贡献评价与预测模型","authors":"Xiran Wang, Kai Yang, Xuan Yang, Peng Zhu","doi":"10.1109/IAEAC54830.2022.9929778","DOIUrl":null,"url":null,"abstract":"Development of low carbon environmental protection energy becomes requirements, peak in carbon, carbon neutral requirement is raised, extensive international track evaluation index, to evaluate a region cut carbon emission reductions, energy intensity in the whole society as a comprehensive key indicators, both associated with control of the total energy consumption, also related to the benefit of the unit of energy output. This paper proposes a adaptive neural network computing, from the perspective of the connotation of decomposition by multiple elements of social energy intensity contribution model, can be decomposed contribution of various elements on the current energy consumption and to quantify the energy consumption intensity influence key factor prediction, calculation under a given energy intensity target, social economy, efficiency, structure and matching index of growth. Solve the blindness of energy intensity prediction and the matching of policy objectives.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Adaptive Contribution Evaluation and Prediction Model of Energy Intensity\",\"authors\":\"Xiran Wang, Kai Yang, Xuan Yang, Peng Zhu\",\"doi\":\"10.1109/IAEAC54830.2022.9929778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of low carbon environmental protection energy becomes requirements, peak in carbon, carbon neutral requirement is raised, extensive international track evaluation index, to evaluate a region cut carbon emission reductions, energy intensity in the whole society as a comprehensive key indicators, both associated with control of the total energy consumption, also related to the benefit of the unit of energy output. This paper proposes a adaptive neural network computing, from the perspective of the connotation of decomposition by multiple elements of social energy intensity contribution model, can be decomposed contribution of various elements on the current energy consumption and to quantify the energy consumption intensity influence key factor prediction, calculation under a given energy intensity target, social economy, efficiency, structure and matching index of growth. Solve the blindness of energy intensity prediction and the matching of policy objectives.\",\"PeriodicalId\":349113,\"journal\":{\"name\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC54830.2022.9929778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发展低碳环保能源成为要求,碳峰值、碳中和的要求被提出,国际上广泛跟踪评价指标,以评价一个地区的碳减排、能源强度作为全社会的综合性关键指标,既关系到能源消费总量的控制,也关系到单位能源产出的效益。本文提出了一种自适应神经网络计算,从内涵的角度分解多要素社会能源强度贡献模型,可以分解当前各要素对能源消耗的贡献,并对影响能源消耗强度的关键因素进行量化预测,计算给定能源强度目标下的社会经济、效率、结构和匹配指标的增长。解决能源强度预测的盲目性和政策目标的匹配性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Adaptive Contribution Evaluation and Prediction Model of Energy Intensity
Development of low carbon environmental protection energy becomes requirements, peak in carbon, carbon neutral requirement is raised, extensive international track evaluation index, to evaluate a region cut carbon emission reductions, energy intensity in the whole society as a comprehensive key indicators, both associated with control of the total energy consumption, also related to the benefit of the unit of energy output. This paper proposes a adaptive neural network computing, from the perspective of the connotation of decomposition by multiple elements of social energy intensity contribution model, can be decomposed contribution of various elements on the current energy consumption and to quantify the energy consumption intensity influence key factor prediction, calculation under a given energy intensity target, social economy, efficiency, structure and matching index of growth. Solve the blindness of energy intensity prediction and the matching of policy objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信