转子极数对新型互补转子槽型永磁电机性能的影响

Qingsong Wang, P. Igić, S. Niu, Junnian Wang
{"title":"转子极数对新型互补转子槽型永磁电机性能的影响","authors":"Qingsong Wang, P. Igić, S. Niu, Junnian Wang","doi":"10.1109/IESES45645.2020.9210680","DOIUrl":null,"url":null,"abstract":"In this paper, the influence of rotor pole number on the performance of a new kind of slot permanent magnet (PM) machine with complementary rotors is investigated. The major merit of this novel machine concept is the use of complementary rotors, which consist of an inner rotor and an outer rotor that are mechanically staggered by 180 electrical degrees, to provide complementary paths for the PM excitation flux. Two layers of PMs are employed, located on the inside and outside of the slots. Meanwhile, with only salient poles, the rotors are mechanically robust. The investigation is based on 12 stator pole machines with 10, 11, 13 and 14 rotor poles. Electromagnetic performance measures including flux linkage, back electromotive force (EMF), torque characteristics, loss and efficiency are comprehensively studied using the finite element method (FEM). The results show that the machine with 11 rotor poles can achieve the largest torque density and rated efficiency, as well as minimum ratio of cogging torque to rated torque.","PeriodicalId":262855,"journal":{"name":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Rotor Pole Number on Performance of Novel Slot Permanent Magnet Machines with Complementary Rotors\",\"authors\":\"Qingsong Wang, P. Igić, S. Niu, Junnian Wang\",\"doi\":\"10.1109/IESES45645.2020.9210680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the influence of rotor pole number on the performance of a new kind of slot permanent magnet (PM) machine with complementary rotors is investigated. The major merit of this novel machine concept is the use of complementary rotors, which consist of an inner rotor and an outer rotor that are mechanically staggered by 180 electrical degrees, to provide complementary paths for the PM excitation flux. Two layers of PMs are employed, located on the inside and outside of the slots. Meanwhile, with only salient poles, the rotors are mechanically robust. The investigation is based on 12 stator pole machines with 10, 11, 13 and 14 rotor poles. Electromagnetic performance measures including flux linkage, back electromotive force (EMF), torque characteristics, loss and efficiency are comprehensively studied using the finite element method (FEM). The results show that the machine with 11 rotor poles can achieve the largest torque density and rated efficiency, as well as minimum ratio of cogging torque to rated torque.\",\"PeriodicalId\":262855,\"journal\":{\"name\":\"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESES45645.2020.9210680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES45645.2020.9210680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了转子极数对一种新型互补转子槽型永磁电机性能的影响。这种新型机器概念的主要优点是使用互补转子,它由一个内转子和一个外转子组成,机械交错180度,为PM激励磁通提供互补路径。采用两层pm,分别位于槽的内部和外部。同时,由于只有凸极,转子在机械上是坚固的。该研究基于12个定子极电机,转子极分别为10、11、13和14个。采用有限元法对磁链、反电动势、转矩特性、损耗和效率等电磁性能指标进行了全面研究。结果表明,采用11个转子极的电机可以获得最大的转矩密度和额定效率,以及最小的齿槽转矩与额定转矩之比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Rotor Pole Number on Performance of Novel Slot Permanent Magnet Machines with Complementary Rotors
In this paper, the influence of rotor pole number on the performance of a new kind of slot permanent magnet (PM) machine with complementary rotors is investigated. The major merit of this novel machine concept is the use of complementary rotors, which consist of an inner rotor and an outer rotor that are mechanically staggered by 180 electrical degrees, to provide complementary paths for the PM excitation flux. Two layers of PMs are employed, located on the inside and outside of the slots. Meanwhile, with only salient poles, the rotors are mechanically robust. The investigation is based on 12 stator pole machines with 10, 11, 13 and 14 rotor poles. Electromagnetic performance measures including flux linkage, back electromotive force (EMF), torque characteristics, loss and efficiency are comprehensively studied using the finite element method (FEM). The results show that the machine with 11 rotor poles can achieve the largest torque density and rated efficiency, as well as minimum ratio of cogging torque to rated torque.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信