用于识别假新闻的自主语义学习方法

Yingxu Wang, James Y. Xu
{"title":"用于识别假新闻的自主语义学习方法","authors":"Yingxu Wang, James Y. Xu","doi":"10.1109/ICAS49788.2021.9551115","DOIUrl":null,"url":null,"abstract":"A persistent challenge to AI theories and technologies is fake news recognition which demands not only syntactic analyses of language expressions, but also their semantics comprehension. This work presents an autonomous system for fake news recognition based on a novel approach of machine semantic learning. A training-free machine learning algorithm of Differential Sentence Semantic Analyses (DSSA) is designed and implemented for fake news detection. A large set of 876 experiments randomly selected from DataCup’ 19 has demonstrated a level of 70.4% accuracy that outperforms the traditional data-driven neural network technologies normally projected at the accuracy level of 55.0%. The DSSA methodology paves a way towards autonomous, training-free, and real-time trustworthy technologies for machine knowledge learning and semantics composition.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Autonomous Semantic Learning Methodology for Fake News Recognition\",\"authors\":\"Yingxu Wang, James Y. Xu\",\"doi\":\"10.1109/ICAS49788.2021.9551115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A persistent challenge to AI theories and technologies is fake news recognition which demands not only syntactic analyses of language expressions, but also their semantics comprehension. This work presents an autonomous system for fake news recognition based on a novel approach of machine semantic learning. A training-free machine learning algorithm of Differential Sentence Semantic Analyses (DSSA) is designed and implemented for fake news detection. A large set of 876 experiments randomly selected from DataCup’ 19 has demonstrated a level of 70.4% accuracy that outperforms the traditional data-driven neural network technologies normally projected at the accuracy level of 55.0%. The DSSA methodology paves a way towards autonomous, training-free, and real-time trustworthy technologies for machine knowledge learning and semantics composition.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

假新闻识别是人工智能理论和技术面临的一个长期挑战,它不仅要求对语言表达进行句法分析,还要求理解其语义。这项工作提出了一种基于机器语义学习新方法的假新闻自主识别系统。为假新闻检测设计并实现了一种无需训练的差分句子语义分析(DSSA)机器学习算法。从 DataCup' 19 中随机选取的 876 个大型实验表明,该算法的准确率高达 70.4%,超过了传统数据驱动神经网络技术通常预计的 55.0% 的准确率水平。DSSA 方法学为机器知识学习和语义合成铺平了一条通往自主、免训练和实时可信技术的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autonomous Semantic Learning Methodology for Fake News Recognition
A persistent challenge to AI theories and technologies is fake news recognition which demands not only syntactic analyses of language expressions, but also their semantics comprehension. This work presents an autonomous system for fake news recognition based on a novel approach of machine semantic learning. A training-free machine learning algorithm of Differential Sentence Semantic Analyses (DSSA) is designed and implemented for fake news detection. A large set of 876 experiments randomly selected from DataCup’ 19 has demonstrated a level of 70.4% accuracy that outperforms the traditional data-driven neural network technologies normally projected at the accuracy level of 55.0%. The DSSA methodology paves a way towards autonomous, training-free, and real-time trustworthy technologies for machine knowledge learning and semantics composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信