A. P. Silva, Bernardo A. Abreu, E. B. Silva, Marcos Carvalho, Matheus Nunes, M. Marotta, A. Hammad, Carlos F. M. Silva, J. F. N. Pinheiro, C. Both, J. Márquez-Barja, L. Dasilva
{"title":"雾和云计算对在光/无线网络测试台上运行的物联网服务的影响","authors":"A. P. Silva, Bernardo A. Abreu, E. B. Silva, Marcos Carvalho, Matheus Nunes, M. Marotta, A. Hammad, Carlos F. M. Silva, J. F. N. Pinheiro, C. Both, J. Márquez-Barja, L. Dasilva","doi":"10.1109/INFCOMW.2017.8116434","DOIUrl":null,"url":null,"abstract":"With the advance of the Internet of Things (IoT), the interaction between humans and smart objects is already a reality. New applications that are expected to operate in dynamic environments must support different modes of human/machine interaction (e.g., voice and sign language), exhibit same or better performance in heterogeneous wireless and optical networks, and be able to react in real time. In particular, dispersed computing has arisen as an approach to deal with latency issues in this context. In the work described herein, we design a smart lighting IoT system that allows control of light bulbs (turn on/off, color and brightness change) through voice and sign language. This work addresses the idea of dispersed computing, which is implemented through fog computing, and combines it with virtualized resources to mitigate latency in the convergence point between wireless and optical networks. The proof-of-concept implementation of our design demonstrates the viability of the approach.","PeriodicalId":306731,"journal":{"name":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Impact of fog and cloud computing on an IoT service running over an optical/wireless network testbed\",\"authors\":\"A. P. Silva, Bernardo A. Abreu, E. B. Silva, Marcos Carvalho, Matheus Nunes, M. Marotta, A. Hammad, Carlos F. M. Silva, J. F. N. Pinheiro, C. Both, J. Márquez-Barja, L. Dasilva\",\"doi\":\"10.1109/INFCOMW.2017.8116434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advance of the Internet of Things (IoT), the interaction between humans and smart objects is already a reality. New applications that are expected to operate in dynamic environments must support different modes of human/machine interaction (e.g., voice and sign language), exhibit same or better performance in heterogeneous wireless and optical networks, and be able to react in real time. In particular, dispersed computing has arisen as an approach to deal with latency issues in this context. In the work described herein, we design a smart lighting IoT system that allows control of light bulbs (turn on/off, color and brightness change) through voice and sign language. This work addresses the idea of dispersed computing, which is implemented through fog computing, and combines it with virtualized resources to mitigate latency in the convergence point between wireless and optical networks. The proof-of-concept implementation of our design demonstrates the viability of the approach.\",\"PeriodicalId\":306731,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2017.8116434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2017.8116434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of fog and cloud computing on an IoT service running over an optical/wireless network testbed
With the advance of the Internet of Things (IoT), the interaction between humans and smart objects is already a reality. New applications that are expected to operate in dynamic environments must support different modes of human/machine interaction (e.g., voice and sign language), exhibit same or better performance in heterogeneous wireless and optical networks, and be able to react in real time. In particular, dispersed computing has arisen as an approach to deal with latency issues in this context. In the work described herein, we design a smart lighting IoT system that allows control of light bulbs (turn on/off, color and brightness change) through voice and sign language. This work addresses the idea of dispersed computing, which is implemented through fog computing, and combines it with virtualized resources to mitigate latency in the convergence point between wireless and optical networks. The proof-of-concept implementation of our design demonstrates the viability of the approach.