光伏电机回顾、比较及开关磁阻电机样机

L. Quéval, L. Vido, A. Coty, B. Multon
{"title":"光伏电机回顾、比较及开关磁阻电机样机","authors":"L. Quéval, L. Vido, A. Coty, B. Multon","doi":"10.1109/EVER.2015.7113028","DOIUrl":null,"url":null,"abstract":"The simplicity of photovoltaic motors makes them ideal candidates for fully autonomous applications requiring thousands of operating hours without maintenance, like water pumping. Photovoltaic motors use photovoltaic cells optically commutated by a shutter driven by the motor rotor to convert light energy into mechanical energy, without the need of any brushes or other power electronics. With the decrease of photovoltaic cells price, photovoltaic motors could be more affordable and reliable than conventional systems, and therefore particularly well suited for off-grid applications. The concept has been patented under various forms, but the scientific literature is so far very scarce. In this article, we attempt to classify photovoltaic motors, and to explain in details their physical working principle. Then we compare the different architectures by defining two pre-design factors linked to the system maximal output power. Finally, we report first experimental results on a photovoltaic switched reluctance motor (PV SRM) prototype using a 6/4 switched reluctance machine and 12 photovoltaic cells.","PeriodicalId":169529,"journal":{"name":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Photovoltaic motors review, comparison and switched reluctance motor prototype\",\"authors\":\"L. Quéval, L. Vido, A. Coty, B. Multon\",\"doi\":\"10.1109/EVER.2015.7113028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simplicity of photovoltaic motors makes them ideal candidates for fully autonomous applications requiring thousands of operating hours without maintenance, like water pumping. Photovoltaic motors use photovoltaic cells optically commutated by a shutter driven by the motor rotor to convert light energy into mechanical energy, without the need of any brushes or other power electronics. With the decrease of photovoltaic cells price, photovoltaic motors could be more affordable and reliable than conventional systems, and therefore particularly well suited for off-grid applications. The concept has been patented under various forms, but the scientific literature is so far very scarce. In this article, we attempt to classify photovoltaic motors, and to explain in details their physical working principle. Then we compare the different architectures by defining two pre-design factors linked to the system maximal output power. Finally, we report first experimental results on a photovoltaic switched reluctance motor (PV SRM) prototype using a 6/4 switched reluctance machine and 12 photovoltaic cells.\",\"PeriodicalId\":169529,\"journal\":{\"name\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2015.7113028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2015.7113028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

光伏电机的简单性使其成为完全自主应用的理想选择,这些应用需要数千小时的无维护运行,比如抽水。光伏电机使用光电池,通过电机转子驱动的快门进行光换向,将光能转换为机械能,而不需要任何电刷或其他电力电子设备。随着光伏电池价格的下降,光伏电机比传统系统更经济可靠,因此特别适合离网应用。这个概念已经以各种形式获得了专利,但迄今为止科学文献非常少。本文试图对光伏电机进行分类,并详细说明其物理工作原理。然后,我们通过定义与系统最大输出功率相关的两个预设计因素来比较不同的架构。最后,我们报告了使用6/4开关磁阻电机和12个光伏电池的光伏开关磁阻电机(PV SRM)原型机的首次实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photovoltaic motors review, comparison and switched reluctance motor prototype
The simplicity of photovoltaic motors makes them ideal candidates for fully autonomous applications requiring thousands of operating hours without maintenance, like water pumping. Photovoltaic motors use photovoltaic cells optically commutated by a shutter driven by the motor rotor to convert light energy into mechanical energy, without the need of any brushes or other power electronics. With the decrease of photovoltaic cells price, photovoltaic motors could be more affordable and reliable than conventional systems, and therefore particularly well suited for off-grid applications. The concept has been patented under various forms, but the scientific literature is so far very scarce. In this article, we attempt to classify photovoltaic motors, and to explain in details their physical working principle. Then we compare the different architectures by defining two pre-design factors linked to the system maximal output power. Finally, we report first experimental results on a photovoltaic switched reluctance motor (PV SRM) prototype using a 6/4 switched reluctance machine and 12 photovoltaic cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信