结合二维经验模态分解的多重分形图像纹理分析

Lei Yang, Tiegang Zhang, Feng Lu, Minxuan Zhang
{"title":"结合二维经验模态分解的多重分形图像纹理分析","authors":"Lei Yang, Tiegang Zhang, Feng Lu, Minxuan Zhang","doi":"10.1109/AINIT59027.2023.10212874","DOIUrl":null,"url":null,"abstract":"The surface texture and microstructure of digital images have an important influence on the construction of features such as image analysis, transformation, and compression. Studies have shown that the fractal spectrum parameters of different types of subject matter will be significantly different. Multifractal spectra and scaling indices quantify the heterogeneity of structural features, demonstrating multiscaling properties. This paper proposes a multifractal spectrum algorithm combining empirical mode decomposition (EMD) and wavelet leaders, starting from the image texture classification task. This method describes the surface shape and microstructure of the image, extends the mode decomposition of the one-dimensional signal in the Hilbert-Huang transform to the two-dimensional image, and gives an image descriptor based on the fractal spectrum. Simulation results demonstrate the accuracy of the proposed method.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractal Image Texture Analysis Combined with 2D Empirical Mode Decomposition\",\"authors\":\"Lei Yang, Tiegang Zhang, Feng Lu, Minxuan Zhang\",\"doi\":\"10.1109/AINIT59027.2023.10212874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface texture and microstructure of digital images have an important influence on the construction of features such as image analysis, transformation, and compression. Studies have shown that the fractal spectrum parameters of different types of subject matter will be significantly different. Multifractal spectra and scaling indices quantify the heterogeneity of structural features, demonstrating multiscaling properties. This paper proposes a multifractal spectrum algorithm combining empirical mode decomposition (EMD) and wavelet leaders, starting from the image texture classification task. This method describes the surface shape and microstructure of the image, extends the mode decomposition of the one-dimensional signal in the Hilbert-Huang transform to the two-dimensional image, and gives an image descriptor based on the fractal spectrum. Simulation results demonstrate the accuracy of the proposed method.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10212874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字图像的表面纹理和微观结构对图像分析、变换和压缩等特征的构建有着重要的影响。研究表明,不同类型物质的分形谱参数会有显著差异。多重分形谱和标度指数量化了结构特征的非均质性,显示了多标度特性。本文从图像纹理分类任务出发,提出了一种结合经验模态分解(EMD)和小波前导的多重分形谱算法。该方法描述了图像的表面形状和微观结构,将Hilbert-Huang变换中一维信号的模态分解扩展到二维图像,并给出了基于分形谱的图像描述符。仿真结果验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal Image Texture Analysis Combined with 2D Empirical Mode Decomposition
The surface texture and microstructure of digital images have an important influence on the construction of features such as image analysis, transformation, and compression. Studies have shown that the fractal spectrum parameters of different types of subject matter will be significantly different. Multifractal spectra and scaling indices quantify the heterogeneity of structural features, demonstrating multiscaling properties. This paper proposes a multifractal spectrum algorithm combining empirical mode decomposition (EMD) and wavelet leaders, starting from the image texture classification task. This method describes the surface shape and microstructure of the image, extends the mode decomposition of the one-dimensional signal in the Hilbert-Huang transform to the two-dimensional image, and gives an image descriptor based on the fractal spectrum. Simulation results demonstrate the accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信