不确定大系统性能的凸层次分析

M. Dinh, A. Korniienko, G. Scorletti
{"title":"不确定大系统性能的凸层次分析","authors":"M. Dinh, A. Korniienko, G. Scorletti","doi":"10.1109/CDC.2014.7040325","DOIUrl":null,"url":null,"abstract":"The performance analysis of uncertain large-scale systems is under consideration. It is performed via a hierarchical modeling and analysis of the systems thanks to the recursive application of a propagation of dissipativity properties result. In contrast to an one-step approach such as (upper bound) μ-analysis where computation time can be prohibitive for largescale systems, the proposed method allows to set the trade-off between conservatism and computation time. The approach is used on a PLL network example and illustrates the new trade-off achieved.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Convex hierarchical analysis for the performances of uncertain large-scale systems\",\"authors\":\"M. Dinh, A. Korniienko, G. Scorletti\",\"doi\":\"10.1109/CDC.2014.7040325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance analysis of uncertain large-scale systems is under consideration. It is performed via a hierarchical modeling and analysis of the systems thanks to the recursive application of a propagation of dissipativity properties result. In contrast to an one-step approach such as (upper bound) μ-analysis where computation time can be prohibitive for largescale systems, the proposed method allows to set the trade-off between conservatism and computation time. The approach is used on a PLL network example and illustrates the new trade-off achieved.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了不确定大系统的性能分析问题。它是通过系统的分层建模和分析来执行的,这要归功于耗散特性传播结果的递归应用。与诸如(上界)μ-分析之类的一步方法相比,该方法允许在保守性和计算时间之间进行权衡。对于大规模系统,μ-分析的计算时间可能令人望而却步。该方法在一个锁相环网络实例中得到了应用,并说明了新的折衷方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex hierarchical analysis for the performances of uncertain large-scale systems
The performance analysis of uncertain large-scale systems is under consideration. It is performed via a hierarchical modeling and analysis of the systems thanks to the recursive application of a propagation of dissipativity properties result. In contrast to an one-step approach such as (upper bound) μ-analysis where computation time can be prohibitive for largescale systems, the proposed method allows to set the trade-off between conservatism and computation time. The approach is used on a PLL network example and illustrates the new trade-off achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信