DELPHI紧凑热模拟方法的演化:边界条件情景的研究

E. Monier-Vinard, V. Bissuel, B. Rogié, N. Laraqi, O. Daniel, Marie-Cécile Kotelon
{"title":"DELPHI紧凑热模拟方法的演化:边界条件情景的研究","authors":"E. Monier-Vinard, V. Bissuel, B. Rogié, N. Laraqi, O. Daniel, Marie-Cécile Kotelon","doi":"10.1109/THERMINIC.2016.7748651","DOIUrl":null,"url":null,"abstract":"Board-level simulation has to consider, at the earliest stage of the conception, the impact of the vicinity of numerous high and medium powered devices. In 1996, the concept of Compact Thermal Model was defined, by the European consortium DELPHI to minimize the computation times, from days to minutes. A CTM resumes an electronic component as a simple cuboid form and a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. Unfortunately the DELPHI method is restricted to steady-state model for mono-chip component. More complex issues such as multi-chip module or transient thermal model remain today for worldwide companies a non-trivial challenge. Our latest improvements made to generate steady-state multi-source CTM for System-In-Package devices showed that the number of boundary-condition scenarios is quite prohibitive when several nodes need to be monitored. The present work investigates the use of fractional factorial experiment, such as N-variables Doehlert design. The objective of this study is to define the lowest number of numerical simulations while keeping the highest accuracy level of the derived Boundary-Condition-Independent thermal network.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolution of the DELPHI compact thermal modelling method: An investigation on the boundary conditions scenarios\",\"authors\":\"E. Monier-Vinard, V. Bissuel, B. Rogié, N. Laraqi, O. Daniel, Marie-Cécile Kotelon\",\"doi\":\"10.1109/THERMINIC.2016.7748651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Board-level simulation has to consider, at the earliest stage of the conception, the impact of the vicinity of numerous high and medium powered devices. In 1996, the concept of Compact Thermal Model was defined, by the European consortium DELPHI to minimize the computation times, from days to minutes. A CTM resumes an electronic component as a simple cuboid form and a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. Unfortunately the DELPHI method is restricted to steady-state model for mono-chip component. More complex issues such as multi-chip module or transient thermal model remain today for worldwide companies a non-trivial challenge. Our latest improvements made to generate steady-state multi-source CTM for System-In-Package devices showed that the number of boundary-condition scenarios is quite prohibitive when several nodes need to be monitored. The present work investigates the use of fractional factorial experiment, such as N-variables Doehlert design. The objective of this study is to define the lowest number of numerical simulations while keeping the highest accuracy level of the derived Boundary-Condition-Independent thermal network.\",\"PeriodicalId\":143150,\"journal\":{\"name\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2016.7748651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7748651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

板级仿真必须考虑,在概念的最早阶段,附近的许多高功率和中等功率器件的影响。1996年,欧洲财团DELPHI定义了紧凑型热模型的概念,以尽量减少计算时间,从几天到几分钟。CTM将电子元件恢复为简单的长方体形式和电阻网络,该网络将单个温度敏感节点连接到主要的热提取表面。遗憾的是,德尔菲法仅限于单片元件的稳态模型。更复杂的问题,如多芯片模块或瞬态热模型,仍然是当今全球公司面临的一个不小的挑战。我们为系统级封装设备生成稳态多源CTM所做的最新改进表明,当需要监控多个节点时,边界条件场景的数量是相当令人望而却步的。本研究探讨了分数因子实验的使用,如n变量Doehlert设计。本研究的目的是定义最少的数值模拟次数,同时保持导出的边界条件无关热网络的最高精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of the DELPHI compact thermal modelling method: An investigation on the boundary conditions scenarios
Board-level simulation has to consider, at the earliest stage of the conception, the impact of the vicinity of numerous high and medium powered devices. In 1996, the concept of Compact Thermal Model was defined, by the European consortium DELPHI to minimize the computation times, from days to minutes. A CTM resumes an electronic component as a simple cuboid form and a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. Unfortunately the DELPHI method is restricted to steady-state model for mono-chip component. More complex issues such as multi-chip module or transient thermal model remain today for worldwide companies a non-trivial challenge. Our latest improvements made to generate steady-state multi-source CTM for System-In-Package devices showed that the number of boundary-condition scenarios is quite prohibitive when several nodes need to be monitored. The present work investigates the use of fractional factorial experiment, such as N-variables Doehlert design. The objective of this study is to define the lowest number of numerical simulations while keeping the highest accuracy level of the derived Boundary-Condition-Independent thermal network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信