零弹分类属性约束学习自编码器

Kun Wang, Songsong Wu, Guangwei Gao, Quan Zhou, Xiaoyuan Jing
{"title":"零弹分类属性约束学习自编码器","authors":"Kun Wang, Songsong Wu, Guangwei Gao, Quan Zhou, Xiaoyuan Jing","doi":"10.1109/ACPR.2017.129","DOIUrl":null,"url":null,"abstract":"The goal of zero-shot classification (ZSC) isto classify target classes precisely based on learning asemantic mapping from a feature space to a semanticknowledge space. However, the learned semantic mappingis only concerned with predicting source classes. Applyingthe semantic mapping to target classes directly will sufferfrom the semantic shift problem. In this paper, we proposea novel method called autoencoder of attribute constraint(AOAC) to settle this problem. In AOAC, we adopt theencoder-decoder paradigm to learn the semantic mapping.Additionally, we take the inaccurate attributes of sourceimages into consideration and generate virtual data to solveit. The experimental results on two challenging datasetsshow that our proposed AOAC can resolve the semanticshift problem effectively and also improve the computationalspeed significantly.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Autoencoder of Attribute Constraint for Zero-Shot Classification\",\"authors\":\"Kun Wang, Songsong Wu, Guangwei Gao, Quan Zhou, Xiaoyuan Jing\",\"doi\":\"10.1109/ACPR.2017.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of zero-shot classification (ZSC) isto classify target classes precisely based on learning asemantic mapping from a feature space to a semanticknowledge space. However, the learned semantic mappingis only concerned with predicting source classes. Applyingthe semantic mapping to target classes directly will sufferfrom the semantic shift problem. In this paper, we proposea novel method called autoencoder of attribute constraint(AOAC) to settle this problem. In AOAC, we adopt theencoder-decoder paradigm to learn the semantic mapping.Additionally, we take the inaccurate attributes of sourceimages into consideration and generate virtual data to solveit. The experimental results on two challenging datasetsshow that our proposed AOAC can resolve the semanticshift problem effectively and also improve the computationalspeed significantly.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

零射击分类(zero-shot classification, ZSC)的目标是通过学习从特征空间到语义知识空间的语义映射来精确分类目标类。然而,学习到的语义映射只与预测源类有关。将语义映射直接应用于目标类会产生语义转移问题。本文提出了一种新的方法——属性约束自编码器(AOAC)来解决这一问题。在AOAC中,我们采用编码器-解码器范式来学习语义映射。此外,我们考虑到源图像的不准确属性,并生成虚拟数据来解决它。在两个具有挑战性的数据集上的实验结果表明,我们提出的AOAC可以有效地解决语义偏移问题,并显着提高计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Autoencoder of Attribute Constraint for Zero-Shot Classification
The goal of zero-shot classification (ZSC) isto classify target classes precisely based on learning asemantic mapping from a feature space to a semanticknowledge space. However, the learned semantic mappingis only concerned with predicting source classes. Applyingthe semantic mapping to target classes directly will sufferfrom the semantic shift problem. In this paper, we proposea novel method called autoencoder of attribute constraint(AOAC) to settle this problem. In AOAC, we adopt theencoder-decoder paradigm to learn the semantic mapping.Additionally, we take the inaccurate attributes of sourceimages into consideration and generate virtual data to solveit. The experimental results on two challenging datasetsshow that our proposed AOAC can resolve the semanticshift problem effectively and also improve the computationalspeed significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信