求解离散空间的花授粉算法、粒子群算法与遗传算法的比较

Wanthanee Rathasamuth, S. Nootyaskool
{"title":"求解离散空间的花授粉算法、粒子群算法与遗传算法的比较","authors":"Wanthanee Rathasamuth, S. Nootyaskool","doi":"10.1109/KST.2016.7440499","DOIUrl":null,"url":null,"abstract":"In order to find an optimal solution of a research problem, the problem parameters are encoded in discrete space (e.g. bits or integers). Genetic algorithm (GA) performs the discrete space by binary chromosome. Particle swarm optimization (PSO) uses probability and sigmoid function to convert the next bird's velocity into binary bit. Flower pollination algorithm (FPA) is quite new and also has a few number of the paper implements to discrete space. This research uses a cut-off parameter applied on FPA. The main objective is to examine the performance of the algorithms on discrete space and calculate velocity of PSO as well as Levy fight movement of FPA when using discrete parameter. The experiment used eight-numerical functions to test conversion from a real value to a bit value and measure the effectiveness of each algorithm. Experiment result showed that FPA could perform better than PSO and GA.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison solving discrete space on flower pollination algorithm, PSO and GA\",\"authors\":\"Wanthanee Rathasamuth, S. Nootyaskool\",\"doi\":\"10.1109/KST.2016.7440499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to find an optimal solution of a research problem, the problem parameters are encoded in discrete space (e.g. bits or integers). Genetic algorithm (GA) performs the discrete space by binary chromosome. Particle swarm optimization (PSO) uses probability and sigmoid function to convert the next bird's velocity into binary bit. Flower pollination algorithm (FPA) is quite new and also has a few number of the paper implements to discrete space. This research uses a cut-off parameter applied on FPA. The main objective is to examine the performance of the algorithms on discrete space and calculate velocity of PSO as well as Levy fight movement of FPA when using discrete parameter. The experiment used eight-numerical functions to test conversion from a real value to a bit value and measure the effectiveness of each algorithm. Experiment result showed that FPA could perform better than PSO and GA.\",\"PeriodicalId\":350687,\"journal\":{\"name\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST.2016.7440499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了找到研究问题的最优解,问题参数被编码在离散空间中(例如位或整数)。遗传算法(GA)通过二元染色体来实现离散空间。粒子群算法(PSO)利用概率和s型函数将下一只鸟的速度转换为二进制位。花授粉算法(FPA)是一种较新的算法,在离散空间上的实现也较少。本研究使用截止参数应用于FPA。主要目的是检验算法在离散空间上的性能,并计算使用离散参数时粒子群的速度和FPA的Levy战斗运动。实验使用8个数值函数来测试实值到位值的转换,并测量每种算法的有效性。实验结果表明,FPA算法的性能优于粒子群算法和遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison solving discrete space on flower pollination algorithm, PSO and GA
In order to find an optimal solution of a research problem, the problem parameters are encoded in discrete space (e.g. bits or integers). Genetic algorithm (GA) performs the discrete space by binary chromosome. Particle swarm optimization (PSO) uses probability and sigmoid function to convert the next bird's velocity into binary bit. Flower pollination algorithm (FPA) is quite new and also has a few number of the paper implements to discrete space. This research uses a cut-off parameter applied on FPA. The main objective is to examine the performance of the algorithms on discrete space and calculate velocity of PSO as well as Levy fight movement of FPA when using discrete parameter. The experiment used eight-numerical functions to test conversion from a real value to a bit value and measure the effectiveness of each algorithm. Experiment result showed that FPA could perform better than PSO and GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信