微带传输线的有限元-边界元耦合方法

John Joshua F. Montañez, Anton Louise P. de Ocampo
{"title":"微带传输线的有限元-边界元耦合方法","authors":"John Joshua F. Montañez, Anton Louise P. de Ocampo","doi":"10.1109/TENSYMP55890.2023.10223657","DOIUrl":null,"url":null,"abstract":"Combining the Finite Element Method (FEM) and Boundary Element Method (BEM) opened a wide array of solutions for ordinary and partial differential equations deemed helpful for engineers and scientists. These methods were applied in various branches of sciences and engineering, especially in computational electromagnetics. This study used computational software to illustrate the coupled FEM-BEM solution in a Microstrip Transmission Line. The processes in coupled FEM-BEM solution were observed, i.e., discretize, derive, assemble, and solve for the Electric Field Intensity and Potential solution regions. The triangular and quadrilateral elements are the geometries used in the discretization process. The number of elements using triangular elements garnered the highest number produced compared to quadrilateral elements. Moreover, the number of nodes produced is constant regardless of the elements utilized. Lower capacitance was noted using quadrilateral elements compared to triangular elements.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line\",\"authors\":\"John Joshua F. Montañez, Anton Louise P. de Ocampo\",\"doi\":\"10.1109/TENSYMP55890.2023.10223657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining the Finite Element Method (FEM) and Boundary Element Method (BEM) opened a wide array of solutions for ordinary and partial differential equations deemed helpful for engineers and scientists. These methods were applied in various branches of sciences and engineering, especially in computational electromagnetics. This study used computational software to illustrate the coupled FEM-BEM solution in a Microstrip Transmission Line. The processes in coupled FEM-BEM solution were observed, i.e., discretize, derive, assemble, and solve for the Electric Field Intensity and Potential solution regions. The triangular and quadrilateral elements are the geometries used in the discretization process. The number of elements using triangular elements garnered the highest number produced compared to quadrilateral elements. Moreover, the number of nodes produced is constant regardless of the elements utilized. Lower capacitance was noted using quadrilateral elements compared to triangular elements.\",\"PeriodicalId\":314726,\"journal\":{\"name\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP55890.2023.10223657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限元法和边界元法的结合为常微分方程和偏微分方程的求解提供了广泛的方法,对工程技术人员和科学家都有很大的帮助。这些方法应用于科学和工程的各个分支,特别是在计算电磁学中。本文利用计算软件对微带传输线的FEM-BEM耦合求解进行了分析。观察了耦合有限元-边界元求解过程,即电场强度和电势求解区域的离散化、推导、组装和求解过程。在离散化过程中使用的几何图形是三角形和四边形单元。与四边形元素相比,使用三角形元素的元素数量最多。此外,无论所使用的元素是什么,所产生的节点数量都是恒定的。与三角形元件相比,使用四边形元件的电容更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line
Combining the Finite Element Method (FEM) and Boundary Element Method (BEM) opened a wide array of solutions for ordinary and partial differential equations deemed helpful for engineers and scientists. These methods were applied in various branches of sciences and engineering, especially in computational electromagnetics. This study used computational software to illustrate the coupled FEM-BEM solution in a Microstrip Transmission Line. The processes in coupled FEM-BEM solution were observed, i.e., discretize, derive, assemble, and solve for the Electric Field Intensity and Potential solution regions. The triangular and quadrilateral elements are the geometries used in the discretization process. The number of elements using triangular elements garnered the highest number produced compared to quadrilateral elements. Moreover, the number of nodes produced is constant regardless of the elements utilized. Lower capacitance was noted using quadrilateral elements compared to triangular elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信