{"title":"基于脑电的脑机接口中协方差矩阵和交叉组合区域的最优信道选择","authors":"Yongkoo Park, Wonzoo Chung","doi":"10.1109/IWW-BCI.2019.8737257","DOIUrl":null,"url":null,"abstract":"The EEG-based brain-computer interface (BCI) requires removal of irrelevant channels to improve performance. In this paper, we propose the optimal channel selection using EEG channel covariance matrix and cross-combining region. First, the discriminative H channels and target channel are selected by difference of EEG channel covariance matrix between two classes. Second, we configure several sub-channel regions to cover the H channels. Then, we extract FBCSP features from cross-combining regions which are combination of the sub-channel regions and target channel. We select the best one cross-combining region and the optimal channels which are included in selected cross-combining region are finally selected. The features of selected region are used as input of LS-SVM classifier. The simulation results show the performance improvement of proposed method for BCI competition III dataset IVa by comparing the conventional channel selection methods.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal channel selection using covariance matrix and cross-combining region in EEG-based BCI\",\"authors\":\"Yongkoo Park, Wonzoo Chung\",\"doi\":\"10.1109/IWW-BCI.2019.8737257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The EEG-based brain-computer interface (BCI) requires removal of irrelevant channels to improve performance. In this paper, we propose the optimal channel selection using EEG channel covariance matrix and cross-combining region. First, the discriminative H channels and target channel are selected by difference of EEG channel covariance matrix between two classes. Second, we configure several sub-channel regions to cover the H channels. Then, we extract FBCSP features from cross-combining regions which are combination of the sub-channel regions and target channel. We select the best one cross-combining region and the optimal channels which are included in selected cross-combining region are finally selected. The features of selected region are used as input of LS-SVM classifier. The simulation results show the performance improvement of proposed method for BCI competition III dataset IVa by comparing the conventional channel selection methods.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal channel selection using covariance matrix and cross-combining region in EEG-based BCI
The EEG-based brain-computer interface (BCI) requires removal of irrelevant channels to improve performance. In this paper, we propose the optimal channel selection using EEG channel covariance matrix and cross-combining region. First, the discriminative H channels and target channel are selected by difference of EEG channel covariance matrix between two classes. Second, we configure several sub-channel regions to cover the H channels. Then, we extract FBCSP features from cross-combining regions which are combination of the sub-channel regions and target channel. We select the best one cross-combining region and the optimal channels which are included in selected cross-combining region are finally selected. The features of selected region are used as input of LS-SVM classifier. The simulation results show the performance improvement of proposed method for BCI competition III dataset IVa by comparing the conventional channel selection methods.