Lovász局部引理分布复杂度的一个尖锐阈值现象

S. Brandt, Yannic Maus, Jara Uitto
{"title":"Lovász局部引理分布复杂度的一个尖锐阈值现象","authors":"S. Brandt, Yannic Maus, Jara Uitto","doi":"10.1145/3293611.3331636","DOIUrl":null,"url":null,"abstract":"The Lovász Local Lemma (LLL) says that, given a set of bad events that depend on the values of some random variables and where each event happens with probability at most p and depends on at most d other events, there is an assignment of the variables that avoids all bad events if the LLL criterion ep(d+1)<1 is satisfied. Nowadays, in the area of distributed graph algorithms it has also become a powerful framework for developing---mostly randomized---algorithms. A classic result by Moser and Tardos yields an O(log^2 n) algorithm for the distributed Lovász Local Lemma [JACM'10] if ep(d + 1) < 1 is satisfied. Given a stronger criterion, i.e., demanding a smaller error probability, it is conceivable that we can find better algorithms. Indeed, for example Chung, Pettie and Su [PODC'14] gave an O(log_epd^2 n) algorithm under the epd^2 < 1 criterion. Going further, Ghaffari, Harris and Kuhn introduced an 2^O(√log log n ) time algorithm given d^8 p = O(1) [FOCS'18]. On the negative side, Brandt et al.\\ and Chang et al.\\ showed that we cannot go below Ω(log log n) (randomized) [STOC'16] and Ω(log n) (deterministic) [FOCS'16], respectively, under the criterion pleq 2^-d . Furthermore, there is a lower bound of Ω(log^* n) that holds for any criterion. In this paper, we study the dependency of the distributed complexity of the LLL problem on the chosen LLL criterion. We show that for the fundamental case of each random variable of the considered LLL instance being associated with an edge of the input graph, that is, each random variable influences at most two events, a sharp threshold phenomenon occurs at p = 2^-d : we provide a simple deterministic (!) algorithm that matches the Ω(log^* n) lower bound in bounded degree graphs, if p < 2^-d , whereas for p \\geq 2^-d , the Ωmega(log log n) randomized and the Ω(log n) deterministic lower bounds hold. In many applications variables affect more than two events; our main contribution is to extend our algorithm to the case where random variables influence at most three different bad events. We show that, surprisingly, the sharp threshold occurs at the exact same spot, providing evidence for our conjecture that this phenomenon always occurs at p = 2^-d , independent of the number r of events that are affected by a variable. Almost all steps of the proof framework we provide for the case r=3 extend directly to the case of arbitrary r; consequently, our approach serves as a step towards characterizing the complexity of the LLL under different exponential criteria.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma\",\"authors\":\"S. Brandt, Yannic Maus, Jara Uitto\",\"doi\":\"10.1145/3293611.3331636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lovász Local Lemma (LLL) says that, given a set of bad events that depend on the values of some random variables and where each event happens with probability at most p and depends on at most d other events, there is an assignment of the variables that avoids all bad events if the LLL criterion ep(d+1)<1 is satisfied. Nowadays, in the area of distributed graph algorithms it has also become a powerful framework for developing---mostly randomized---algorithms. A classic result by Moser and Tardos yields an O(log^2 n) algorithm for the distributed Lovász Local Lemma [JACM'10] if ep(d + 1) < 1 is satisfied. Given a stronger criterion, i.e., demanding a smaller error probability, it is conceivable that we can find better algorithms. Indeed, for example Chung, Pettie and Su [PODC'14] gave an O(log_epd^2 n) algorithm under the epd^2 < 1 criterion. Going further, Ghaffari, Harris and Kuhn introduced an 2^O(√log log n ) time algorithm given d^8 p = O(1) [FOCS'18]. On the negative side, Brandt et al.\\\\ and Chang et al.\\\\ showed that we cannot go below Ω(log log n) (randomized) [STOC'16] and Ω(log n) (deterministic) [FOCS'16], respectively, under the criterion pleq 2^-d . Furthermore, there is a lower bound of Ω(log^* n) that holds for any criterion. In this paper, we study the dependency of the distributed complexity of the LLL problem on the chosen LLL criterion. We show that for the fundamental case of each random variable of the considered LLL instance being associated with an edge of the input graph, that is, each random variable influences at most two events, a sharp threshold phenomenon occurs at p = 2^-d : we provide a simple deterministic (!) algorithm that matches the Ω(log^* n) lower bound in bounded degree graphs, if p < 2^-d , whereas for p \\\\geq 2^-d , the Ωmega(log log n) randomized and the Ω(log n) deterministic lower bounds hold. In many applications variables affect more than two events; our main contribution is to extend our algorithm to the case where random variables influence at most three different bad events. We show that, surprisingly, the sharp threshold occurs at the exact same spot, providing evidence for our conjecture that this phenomenon always occurs at p = 2^-d , independent of the number r of events that are affected by a variable. Almost all steps of the proof framework we provide for the case r=3 extend directly to the case of arbitrary r; consequently, our approach serves as a step towards characterizing the complexity of the LLL under different exponential criteria.\",\"PeriodicalId\":153766,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293611.3331636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Lovász局部引理(LLL)说,给定一组依赖于一些随机变量的值的坏事件,其中每个事件发生的概率最多为p,并依赖于最多d个其他事件,如果LLL准则ep(d+1)<1满足,则存在一种变量赋值,可以避免所有坏事件。如今,在分布式图算法领域,它也成为开发(大多是随机的)算法的强大框架。如果满足ep(d + 1) < 1, Moser和Tardos的经典结果为分布式Lovász局部引理[JACM'10]提供了O(log^2 n)算法。给定一个更强的标准,即要求更小的错误概率,可以想象我们可以找到更好的算法。事实上,例如Chung, Pettie和Su [PODC'14]给出了epd^2 < 1准则下的O(log_epd^2 n)算法。进一步,Ghaffari, Harris和Kuhn引入了一个2^O(√log log n)时间算法,给定d^ 8p = O(1) [FOCS'18]。在消极方面,Brandt等人和Chang等人表明,在pleq 2^-d准则下,我们不能分别低于Ω(log log n)(随机化)[STOC'16]和Ω(log n)(确定性)[FOCS'16]。此外,对于任何标准都存在Ω(log^* n)的下界。本文研究了LLL问题的分布复杂度与所选择的LLL准则的依赖关系。我们表明,对于所考虑的LLL实例的每个随机变量与输入图的一条边相关联的基本情况,即每个随机变量最多影响两个事件,在p = 2^-d处发生尖锐阈值现象:我们提供了一个简单的确定性(!)算法,它匹配有界度图中的Ω(log^* n)下界,如果p < 2^ d,而对于p \geq 2^ d, Ωmega(log log n)随机化和Ω(log n)确定性下界保持不变。在许多应用程序中,变量影响两个以上的事件;我们的主要贡献是将我们的算法扩展到随机变量最多影响三种不同的坏事件的情况。我们表明,令人惊讶的是,尖锐的阈值发生在完全相同的位置,为我们的猜想提供了证据,即这种现象总是发生在p = 2^-d,与受变量影响的事件的数量r无关。我们为r=3的情况提供的证明框架的几乎所有步骤都可以直接推广到任意r的情况;因此,我们的方法可以作为表征不同指数准则下LLL复杂性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma
The Lovász Local Lemma (LLL) says that, given a set of bad events that depend on the values of some random variables and where each event happens with probability at most p and depends on at most d other events, there is an assignment of the variables that avoids all bad events if the LLL criterion ep(d+1)<1 is satisfied. Nowadays, in the area of distributed graph algorithms it has also become a powerful framework for developing---mostly randomized---algorithms. A classic result by Moser and Tardos yields an O(log^2 n) algorithm for the distributed Lovász Local Lemma [JACM'10] if ep(d + 1) < 1 is satisfied. Given a stronger criterion, i.e., demanding a smaller error probability, it is conceivable that we can find better algorithms. Indeed, for example Chung, Pettie and Su [PODC'14] gave an O(log_epd^2 n) algorithm under the epd^2 < 1 criterion. Going further, Ghaffari, Harris and Kuhn introduced an 2^O(√log log n ) time algorithm given d^8 p = O(1) [FOCS'18]. On the negative side, Brandt et al.\ and Chang et al.\ showed that we cannot go below Ω(log log n) (randomized) [STOC'16] and Ω(log n) (deterministic) [FOCS'16], respectively, under the criterion pleq 2^-d . Furthermore, there is a lower bound of Ω(log^* n) that holds for any criterion. In this paper, we study the dependency of the distributed complexity of the LLL problem on the chosen LLL criterion. We show that for the fundamental case of each random variable of the considered LLL instance being associated with an edge of the input graph, that is, each random variable influences at most two events, a sharp threshold phenomenon occurs at p = 2^-d : we provide a simple deterministic (!) algorithm that matches the Ω(log^* n) lower bound in bounded degree graphs, if p < 2^-d , whereas for p \geq 2^-d , the Ωmega(log log n) randomized and the Ω(log n) deterministic lower bounds hold. In many applications variables affect more than two events; our main contribution is to extend our algorithm to the case where random variables influence at most three different bad events. We show that, surprisingly, the sharp threshold occurs at the exact same spot, providing evidence for our conjecture that this phenomenon always occurs at p = 2^-d , independent of the number r of events that are affected by a variable. Almost all steps of the proof framework we provide for the case r=3 extend directly to the case of arbitrary r; consequently, our approach serves as a step towards characterizing the complexity of the LLL under different exponential criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信