进化学习神经网络的快速算法

Zhong-hua Xu, Weini Chen, W. Yang, Fengnian Liu
{"title":"进化学习神经网络的快速算法","authors":"Zhong-hua Xu, Weini Chen, W. Yang, Fengnian Liu","doi":"10.1109/ISDEA.2012.712","DOIUrl":null,"url":null,"abstract":"The neural networks have been widely applied to optimum calculation and solution of complicated problems. In particular, the evolutional learning neural network has better characteristic and higher precision than other neural networks. But the slow computational rate of evolutional learning and the local-optimum of the evolutional learning neural network seriously influence its application. In this paper, the fast algorithm combining the gradient descent algorithm with the evolutional learning algorithm can effectively solve above problems. This neural network has been extensively applied.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast Algorithm of Evolutional Learning Neural Network\",\"authors\":\"Zhong-hua Xu, Weini Chen, W. Yang, Fengnian Liu\",\"doi\":\"10.1109/ISDEA.2012.712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neural networks have been widely applied to optimum calculation and solution of complicated problems. In particular, the evolutional learning neural network has better characteristic and higher precision than other neural networks. But the slow computational rate of evolutional learning and the local-optimum of the evolutional learning neural network seriously influence its application. In this paper, the fast algorithm combining the gradient descent algorithm with the evolutional learning algorithm can effectively solve above problems. This neural network has been extensively applied.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

神经网络已广泛应用于复杂问题的优化计算和求解。特别是,进化学习神经网络比其他神经网络具有更好的特性和更高的精度。但是,进化学习的计算速度慢以及进化学习神经网络的局部最优性严重影响了其应用。本文将梯度下降算法与进化学习算法相结合的快速算法可以有效地解决上述问题。这种神经网络得到了广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Algorithm of Evolutional Learning Neural Network
The neural networks have been widely applied to optimum calculation and solution of complicated problems. In particular, the evolutional learning neural network has better characteristic and higher precision than other neural networks. But the slow computational rate of evolutional learning and the local-optimum of the evolutional learning neural network seriously influence its application. In this paper, the fast algorithm combining the gradient descent algorithm with the evolutional learning algorithm can effectively solve above problems. This neural network has been extensively applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信