用于射频传播建模的激光雷达自动分类系统

J. Worsey, I. Hindmarch, S. Armour, D. Bull
{"title":"用于射频传播建模的激光雷达自动分类系统","authors":"J. Worsey, I. Hindmarch, S. Armour, D. Bull","doi":"10.1109/AI4I51902.2021.00019","DOIUrl":null,"url":null,"abstract":"Many technologies and applications now necessitate an awareness of their geographical surroundings, typically employing an array of sensors to capture the environment. A key application is telecommunication network planning which benefits from the utilisation of RF propagation tools which incorporate representations of target environments typically sourced from high resolution aerial photography and/or LIDAR point clouds. However, the amount of data associated with LIDAR scanning can be very large, permutation invariant and clustered. Manually classifying this data, to maximise its utility in a propagation model, is not easily scaleable; being both labour intensive and time consuming. This paper describes a system which facilitates the automatic classification of point cloud data and its subsequent translation as wireframe meshes into a propagation model. Testing of automatically classified versus hand-labelled clutter results in comparable performance, with the average difference across all measurements of the automated approach outperforming hand-labelled data by circa 2.5 dB.","PeriodicalId":114373,"journal":{"name":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A system to automatically classify LIDAR for use within RF propagation modelling\",\"authors\":\"J. Worsey, I. Hindmarch, S. Armour, D. Bull\",\"doi\":\"10.1109/AI4I51902.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many technologies and applications now necessitate an awareness of their geographical surroundings, typically employing an array of sensors to capture the environment. A key application is telecommunication network planning which benefits from the utilisation of RF propagation tools which incorporate representations of target environments typically sourced from high resolution aerial photography and/or LIDAR point clouds. However, the amount of data associated with LIDAR scanning can be very large, permutation invariant and clustered. Manually classifying this data, to maximise its utility in a propagation model, is not easily scaleable; being both labour intensive and time consuming. This paper describes a system which facilitates the automatic classification of point cloud data and its subsequent translation as wireframe meshes into a propagation model. Testing of automatically classified versus hand-labelled clutter results in comparable performance, with the average difference across all measurements of the automated approach outperforming hand-labelled data by circa 2.5 dB.\",\"PeriodicalId\":114373,\"journal\":{\"name\":\"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I51902.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I51902.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在许多技术和应用都需要了解其地理环境,通常采用一系列传感器来捕捉环境。一个关键的应用是电信网络规划,它受益于射频传播工具的利用,该工具结合了目标环境的表示,通常来自高分辨率航空摄影和/或激光雷达点云。然而,与激光雷达扫描相关的数据量可能非常大,排列不变和聚类。手动对这些数据进行分类,以最大化其在传播模型中的效用,不容易扩展;既费时又费力。本文描述了一个点云数据的自动分类系统,并将其作为线框网格转换为传播模型。自动分类与手工标记杂波的测试结果具有可比性,自动方法的所有测量结果的平均差异比手工标记数据高出约2.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system to automatically classify LIDAR for use within RF propagation modelling
Many technologies and applications now necessitate an awareness of their geographical surroundings, typically employing an array of sensors to capture the environment. A key application is telecommunication network planning which benefits from the utilisation of RF propagation tools which incorporate representations of target environments typically sourced from high resolution aerial photography and/or LIDAR point clouds. However, the amount of data associated with LIDAR scanning can be very large, permutation invariant and clustered. Manually classifying this data, to maximise its utility in a propagation model, is not easily scaleable; being both labour intensive and time consuming. This paper describes a system which facilitates the automatic classification of point cloud data and its subsequent translation as wireframe meshes into a propagation model. Testing of automatically classified versus hand-labelled clutter results in comparable performance, with the average difference across all measurements of the automated approach outperforming hand-labelled data by circa 2.5 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信