{"title":"医疗保健中的隐私保护联合学习","authors":"Sunghwan Moon, Won Hee Lee","doi":"10.1109/ICEIC57457.2023.10049966","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Privacy-Preserving Federated Learning in Healthcare\",\"authors\":\"Sunghwan Moon, Won Hee Lee\",\"doi\":\"10.1109/ICEIC57457.2023.10049966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.\",\"PeriodicalId\":373752,\"journal\":{\"name\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC57457.2023.10049966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Privacy-Preserving Federated Learning in Healthcare
Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.