基于自适应搜索策略的高效多路符号执行

Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang
{"title":"基于自适应搜索策略的高效多路符号执行","authors":"Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang","doi":"10.1145/3324884.3418902","DOIUrl":null,"url":null,"abstract":"Symbolic execution is still facing the scalability problem caused by path explosion and constraint solving overhead. The recently proposed MuSE framework supports exploring multiple paths by generating partial solutions in one time of solving. In this work, we improve MuSE from two aspects. Firstly, we use a light-weight check to reduce redundant partial solutions for avoiding the redundant executions having the same results. Secondly, we introduce online learning to devise an adaptive search strategy for the target programs. The preliminary experimental results indicate the promising of the proposed methods.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Multiplex Symbolic Execution with Adaptive Search Strategy\",\"authors\":\"Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang\",\"doi\":\"10.1145/3324884.3418902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic execution is still facing the scalability problem caused by path explosion and constraint solving overhead. The recently proposed MuSE framework supports exploring multiple paths by generating partial solutions in one time of solving. In this work, we improve MuSE from two aspects. Firstly, we use a light-weight check to reduce redundant partial solutions for avoiding the redundant executions having the same results. Secondly, we introduce online learning to devise an adaptive search strategy for the target programs. The preliminary experimental results indicate the promising of the proposed methods.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3418902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

符号执行仍然面临着由路径爆炸和约束求解开销引起的可伸缩性问题。最近提出的MuSE框架支持通过在一次求解中生成部分解来探索多条路径。在这项工作中,我们从两个方面改进MuSE。首先,我们使用轻量级检查来减少冗余的部分解决方案,以避免具有相同结果的冗余执行。其次,我们引入在线学习来设计目标程序的自适应搜索策略。初步的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Multiplex Symbolic Execution with Adaptive Search Strategy
Symbolic execution is still facing the scalability problem caused by path explosion and constraint solving overhead. The recently proposed MuSE framework supports exploring multiple paths by generating partial solutions in one time of solving. In this work, we improve MuSE from two aspects. Firstly, we use a light-weight check to reduce redundant partial solutions for avoiding the redundant executions having the same results. Secondly, we introduce online learning to devise an adaptive search strategy for the target programs. The preliminary experimental results indicate the promising of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信