级联高生产力语言

D. Callahan, B. Chamberlain, H. Zima
{"title":"级联高生产力语言","authors":"D. Callahan, B. Chamberlain, H. Zima","doi":"10.1109/HIPS.2004.10002","DOIUrl":null,"url":null,"abstract":"The strong focus of recent high end computing efforts on performance has resulted in a low-level parallel programming paradigm characterized by explicit control over message-passing in the framework of a fragmented programming model. In such a model, object code performance is achieved at the expense of productivity, conciseness, and clarity. This paper describes the design of Chapel, the cascade high productivity language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface. The design of Chapel is guided by four key areas of language technology: multithreading, locality-awareness, object-orientation, and generic programming. The Cascade architecture, which is being developed in parallel with the language, provides key architectural support for its efficient implementation.","PeriodicalId":448869,"journal":{"name":"Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"The cascade high productivity language\",\"authors\":\"D. Callahan, B. Chamberlain, H. Zima\",\"doi\":\"10.1109/HIPS.2004.10002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong focus of recent high end computing efforts on performance has resulted in a low-level parallel programming paradigm characterized by explicit control over message-passing in the framework of a fragmented programming model. In such a model, object code performance is achieved at the expense of productivity, conciseness, and clarity. This paper describes the design of Chapel, the cascade high productivity language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface. The design of Chapel is guided by four key areas of language technology: multithreading, locality-awareness, object-orientation, and generic programming. The Cascade architecture, which is being developed in parallel with the language, provides key architectural support for its efficient implementation.\",\"PeriodicalId\":448869,\"journal\":{\"name\":\"Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIPS.2004.10002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPS.2004.10002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

最近高端计算对性能的强烈关注导致了一种低级并行编程范式,其特点是在碎片编程模型的框架中对消息传递进行显式控制。在这样的模型中,目标代码的性能是以牺牲生产力、简洁性和清晰度为代价的。本文描述了由Cray公司领导的由darpa资助的HPCS项目cascade开发的级联高生产率语言Chapel的设计。Chapel通过专注于生产力,特别是通过将尽可能高的目标代码性能与高级用户界面提供的可编程性相结合,推动了HEC系统编程语言的最新发展。Chapel的设计以语言技术的四个关键领域为指导:多线程、位置感知、面向对象和泛型编程。与该语言并行开发的Cascade体系结构为其有效实现提供了关键的体系结构支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cascade high productivity language
The strong focus of recent high end computing efforts on performance has resulted in a low-level parallel programming paradigm characterized by explicit control over message-passing in the framework of a fragmented programming model. In such a model, object code performance is achieved at the expense of productivity, conciseness, and clarity. This paper describes the design of Chapel, the cascade high productivity language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface. The design of Chapel is guided by four key areas of language technology: multithreading, locality-awareness, object-orientation, and generic programming. The Cascade architecture, which is being developed in parallel with the language, provides key architectural support for its efficient implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信