{"title":"基于神经网络认知引擎的WLAN VoIP用户驱动呼叫准入控制","authors":"N. Baldo, P. Dini, Jaume Nin-Guerrero","doi":"10.1109/CIP.2010.5604128","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the problem of user-driven Call Admission Control for Voice over IP communications in a Wireless LAN environment. We argue that state-of-the-art solutions to this problem are suboptimal, since they leverage on analytical models whose assumptions are not necessarily verified in the scenario considered. To overcome this problem, we propose a cognitive solution based on Multilayer Feed-forward Neural Networks. According to our solution, the mobile station learns from past experience how application-layer service quality depends on the wireless link conditions. Our performance evaluation, carried out both by simulation and testbed experiments, shows that this solution effectively outperforms state-of-the-art strategies in performing a correct admission decision.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"User-driven Call Admission Control for VoIP over WLAN with a Neural Network based cognitive engine\",\"authors\":\"N. Baldo, P. Dini, Jaume Nin-Guerrero\",\"doi\":\"10.1109/CIP.2010.5604128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we deal with the problem of user-driven Call Admission Control for Voice over IP communications in a Wireless LAN environment. We argue that state-of-the-art solutions to this problem are suboptimal, since they leverage on analytical models whose assumptions are not necessarily verified in the scenario considered. To overcome this problem, we propose a cognitive solution based on Multilayer Feed-forward Neural Networks. According to our solution, the mobile station learns from past experience how application-layer service quality depends on the wireless link conditions. Our performance evaluation, carried out both by simulation and testbed experiments, shows that this solution effectively outperforms state-of-the-art strategies in performing a correct admission decision.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
User-driven Call Admission Control for VoIP over WLAN with a Neural Network based cognitive engine
In this paper we deal with the problem of user-driven Call Admission Control for Voice over IP communications in a Wireless LAN environment. We argue that state-of-the-art solutions to this problem are suboptimal, since they leverage on analytical models whose assumptions are not necessarily verified in the scenario considered. To overcome this problem, we propose a cognitive solution based on Multilayer Feed-forward Neural Networks. According to our solution, the mobile station learns from past experience how application-layer service quality depends on the wireless link conditions. Our performance evaluation, carried out both by simulation and testbed experiments, shows that this solution effectively outperforms state-of-the-art strategies in performing a correct admission decision.