基于细胞神经网络的杀伤人员地雷被动红外偏振遥感

P. López, M. Balsi, D. L. Vilariño, D. Cabello
{"title":"基于细胞神经网络的杀伤人员地雷被动红外偏振遥感","authors":"P. López, M. Balsi, D. L. Vilariño, D. Cabello","doi":"10.1109/CLEOE.2000.910198","DOIUrl":null,"url":null,"abstract":"Summary form only given. Active IR polarimetric sensing has been successfully applied for the remote sensing of man made objects and, particular, of buried mines. However, the scattering and power/SNR constraints require near overhead viewing. In contrast, passive polarimetric sensing allows detection with much more operationally convenient arrangements which is highly desirable when working in mined lands. In this work, an approach for detecting buried antipersonnel mines based on the dynamic behaviour difference is presented. The basic idea consists of using a sequence of images of the same piece of land at different time intervals which are applied as the input of a reconfigurable cellular neural network (CNN) architecture. Then, a learning algorithm is applied that optimizes both the network parameters and the network topology that best fit the desired behaviour.","PeriodicalId":250878,"journal":{"name":"Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive IR polarimetric remote sensing of antipersonnel mines using cellular neural networks\",\"authors\":\"P. López, M. Balsi, D. L. Vilariño, D. Cabello\",\"doi\":\"10.1109/CLEOE.2000.910198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Active IR polarimetric sensing has been successfully applied for the remote sensing of man made objects and, particular, of buried mines. However, the scattering and power/SNR constraints require near overhead viewing. In contrast, passive polarimetric sensing allows detection with much more operationally convenient arrangements which is highly desirable when working in mined lands. In this work, an approach for detecting buried antipersonnel mines based on the dynamic behaviour difference is presented. The basic idea consists of using a sequence of images of the same piece of land at different time intervals which are applied as the input of a reconfigurable cellular neural network (CNN) architecture. Then, a learning algorithm is applied that optimizes both the network parameters and the network topology that best fit the desired behaviour.\",\"PeriodicalId\":250878,\"journal\":{\"name\":\"Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2000.910198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2000.910198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。主动红外偏振传感已成功地应用于人造物体的遥感,特别是地埋地雷的遥感。然而,散射和功率/信噪比限制需要近头顶观察。相比之下,被动极化传感允许以更方便的操作安排进行探测,这在矿区工作时是非常理想的。提出了一种基于动态特性差异的埋地杀伤人员地雷探测方法。其基本思想是使用同一块土地在不同时间间隔的一系列图像作为可重构细胞神经网络(CNN)架构的输入。然后,应用一种学习算法来优化网络参数和最适合期望行为的网络拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive IR polarimetric remote sensing of antipersonnel mines using cellular neural networks
Summary form only given. Active IR polarimetric sensing has been successfully applied for the remote sensing of man made objects and, particular, of buried mines. However, the scattering and power/SNR constraints require near overhead viewing. In contrast, passive polarimetric sensing allows detection with much more operationally convenient arrangements which is highly desirable when working in mined lands. In this work, an approach for detecting buried antipersonnel mines based on the dynamic behaviour difference is presented. The basic idea consists of using a sequence of images of the same piece of land at different time intervals which are applied as the input of a reconfigurable cellular neural network (CNN) architecture. Then, a learning algorithm is applied that optimizes both the network parameters and the network topology that best fit the desired behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信