Jan Svoboda, Pietro Astolfi, D. Boscaini, Jonathan Masci, M. Bronstein
{"title":"聚类动态图CNN用于生物特征三维手形识别","authors":"Jan Svoboda, Pietro Astolfi, D. Boscaini, Jonathan Masci, M. Bronstein","doi":"10.1109/IJCB48548.2020.9304894","DOIUrl":null,"url":null,"abstract":"The research in biometric recognition using hand shape has been somewhat stagnating in the last decade. Meanwhile, computer vision and machine learning have experienced a paradigm shift with the renaissance of deep learning, which has set the new state-of-the-art in many related fields. Inspired by successful applications of deep learning for other biometric modalities, we propose a novel approach to 3D hand shape recognition from RGB-D data based on geometric deep learning techniques. We show how to train our model on synthetic data and retain the performance on real samples during test time. To evaluate our method, we provide a new dataset NNHand RGB- D of short video sequences and show encouraging performance compared to diverse baselines on the new data, as well as current benchmark dataset HKPolyU. Moreover, the new dataset opens door to many new research directions in hand shape recognition.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition\",\"authors\":\"Jan Svoboda, Pietro Astolfi, D. Boscaini, Jonathan Masci, M. Bronstein\",\"doi\":\"10.1109/IJCB48548.2020.9304894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research in biometric recognition using hand shape has been somewhat stagnating in the last decade. Meanwhile, computer vision and machine learning have experienced a paradigm shift with the renaissance of deep learning, which has set the new state-of-the-art in many related fields. Inspired by successful applications of deep learning for other biometric modalities, we propose a novel approach to 3D hand shape recognition from RGB-D data based on geometric deep learning techniques. We show how to train our model on synthetic data and retain the performance on real samples during test time. To evaluate our method, we provide a new dataset NNHand RGB- D of short video sequences and show encouraging performance compared to diverse baselines on the new data, as well as current benchmark dataset HKPolyU. Moreover, the new dataset opens door to many new research directions in hand shape recognition.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition
The research in biometric recognition using hand shape has been somewhat stagnating in the last decade. Meanwhile, computer vision and machine learning have experienced a paradigm shift with the renaissance of deep learning, which has set the new state-of-the-art in many related fields. Inspired by successful applications of deep learning for other biometric modalities, we propose a novel approach to 3D hand shape recognition from RGB-D data based on geometric deep learning techniques. We show how to train our model on synthetic data and retain the performance on real samples during test time. To evaluate our method, we provide a new dataset NNHand RGB- D of short video sequences and show encouraging performance compared to diverse baselines on the new data, as well as current benchmark dataset HKPolyU. Moreover, the new dataset opens door to many new research directions in hand shape recognition.