基于集合理论的神经模糊电机故障检测器

M. Chow, Sinan Altung, H. Trussell
{"title":"基于集合理论的神经模糊电机故障检测器","authors":"M. Chow, Sinan Altung, H. Trussell","doi":"10.1109/IECON.1998.724005","DOIUrl":null,"url":null,"abstract":"The usual motor incipient fault detection procedures require engineers and researchers to devote a significant amount of time and energy to investigate the motor system they are working with. This paper presents a set theoretic approach that provides a systematic way to formulate and incorporate information into the motor fault detection framework. Based on this set theoretic formulation, a heuristically constrained neural/fuzzy system is then used to learn the exact input/output relation of the fault detection process for a specific motor using measured data. This system is able to provide updated membership functions of the sets which better describe the fault detection problem. To illustrate their proposed methodology, a three-phase induction motor exposed to changing external factors is used for the detection of a friction fault.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Set theoretic based neural-fuzzy motor fault detector\",\"authors\":\"M. Chow, Sinan Altung, H. Trussell\",\"doi\":\"10.1109/IECON.1998.724005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usual motor incipient fault detection procedures require engineers and researchers to devote a significant amount of time and energy to investigate the motor system they are working with. This paper presents a set theoretic approach that provides a systematic way to formulate and incorporate information into the motor fault detection framework. Based on this set theoretic formulation, a heuristically constrained neural/fuzzy system is then used to learn the exact input/output relation of the fault detection process for a specific motor using measured data. This system is able to provide updated membership functions of the sets which better describe the fault detection problem. To illustrate their proposed methodology, a three-phase induction motor exposed to changing external factors is used for the detection of a friction fault.\",\"PeriodicalId\":377136,\"journal\":{\"name\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1998.724005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.724005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

通常的电机早期故障检测程序要求工程师和研究人员投入大量的时间和精力来研究他们正在使用的电机系统。本文提出了一种集理论方法,提供了一种系统的方法来制定和整合信息到电机故障检测框架中。在此基础上,采用启发式约束神经/模糊系统,利用实测数据学习特定电机故障检测过程的准确输入/输出关系。该系统能够提供更新的集合隶属度函数,更好地描述故障检测问题。为了说明他们提出的方法,一个暴露于变化的外部因素的三相感应电动机被用于检测摩擦故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set theoretic based neural-fuzzy motor fault detector
The usual motor incipient fault detection procedures require engineers and researchers to devote a significant amount of time and energy to investigate the motor system they are working with. This paper presents a set theoretic approach that provides a systematic way to formulate and incorporate information into the motor fault detection framework. Based on this set theoretic formulation, a heuristically constrained neural/fuzzy system is then used to learn the exact input/output relation of the fault detection process for a specific motor using measured data. This system is able to provide updated membership functions of the sets which better describe the fault detection problem. To illustrate their proposed methodology, a three-phase induction motor exposed to changing external factors is used for the detection of a friction fault.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信