从黑白照片中恢复色彩

S. Olsen, Rachel Gold, A. Gooch, B. Gooch
{"title":"从黑白照片中恢复色彩","authors":"S. Olsen, Rachel Gold, A. Gooch, B. Gooch","doi":"10.1109/ICCPHOT.2010.5585088","DOIUrl":null,"url":null,"abstract":"This paper presents a mathematical framework for recovering color information from multiple photographic sources. Such sources could include either black and white negatives or photographic plates. This paper's main technical contribution is the use of Bayesian analysis to calculate the most likely color at any sample point, along with an expected error value. We explore the limits of our approach using hyperspectral datasets, and show that in some cases, it may be possible to recover the bulk of the color information in an image from as few as two black and white sources.","PeriodicalId":248821,"journal":{"name":"2010 IEEE International Conference on Computational Photography (ICCP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Recovering color from black and white photographs\",\"authors\":\"S. Olsen, Rachel Gold, A. Gooch, B. Gooch\",\"doi\":\"10.1109/ICCPHOT.2010.5585088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a mathematical framework for recovering color information from multiple photographic sources. Such sources could include either black and white negatives or photographic plates. This paper's main technical contribution is the use of Bayesian analysis to calculate the most likely color at any sample point, along with an expected error value. We explore the limits of our approach using hyperspectral datasets, and show that in some cases, it may be possible to recover the bulk of the color information in an image from as few as two black and white sources.\",\"PeriodicalId\":248821,\"journal\":{\"name\":\"2010 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPHOT.2010.5585088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2010.5585088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种从多图像源中恢复颜色信息的数学框架。这些来源可以包括黑白底片或照相底片。本文的主要技术贡献是使用贝叶斯分析来计算任何样本点上最可能的颜色,以及预期误差值。我们探索了使用高光谱数据集的方法的局限性,并表明在某些情况下,可以从少至两个黑白源中恢复图像中的大部分颜色信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering color from black and white photographs
This paper presents a mathematical framework for recovering color information from multiple photographic sources. Such sources could include either black and white negatives or photographic plates. This paper's main technical contribution is the use of Bayesian analysis to calculate the most likely color at any sample point, along with an expected error value. We explore the limits of our approach using hyperspectral datasets, and show that in some cases, it may be possible to recover the bulk of the color information in an image from as few as two black and white sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信