在2019冠状病毒病期间,天主教通过公共推特数据影响演变

E. Marín, Cristina Blanco González-Tejero, María Guijarro García, F. J. S. García
{"title":"在2019冠状病毒病期间,天主教通过公共推特数据影响演变","authors":"E. Marín, Cristina Blanco González-Tejero, María Guijarro García, F. J. S. García","doi":"10.4018/ijcac.305211","DOIUrl":null,"url":null,"abstract":"During the Covid-19 crisis, many networks have sprung up disseminating information. This study examines the influence of religion during the Covid-19 pandemic. It understands religion as a factor capable of mitigating frustrations and critical situations in society. To this end, a data mining analysis was developed for a set of 107,786 tweets collected from the social platform Twitter in the framework of user-generated content (UGC), linked to the Covid-19 related tweets published by @Pontifex and @Pontifex_es. To achieve this goal, hidden insight data extraction and sentiment analysis are carried out, along with the application of Social Network Analysis (SNA) techniques. The main outcome of the study is the positive correlation between the repercussion of the Pope’s tweets and the evolution of the Covid-19 incidence in Europe. Finally, the Latent Dirichlet Allocation (LDA) algorithm identifies the relevant topics in the analysis.","PeriodicalId":442336,"journal":{"name":"Int. J. Cloud Appl. Comput.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catholic Impact Evolution Through Public Twitter Data During COVID-19\",\"authors\":\"E. Marín, Cristina Blanco González-Tejero, María Guijarro García, F. J. S. García\",\"doi\":\"10.4018/ijcac.305211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the Covid-19 crisis, many networks have sprung up disseminating information. This study examines the influence of religion during the Covid-19 pandemic. It understands religion as a factor capable of mitigating frustrations and critical situations in society. To this end, a data mining analysis was developed for a set of 107,786 tweets collected from the social platform Twitter in the framework of user-generated content (UGC), linked to the Covid-19 related tweets published by @Pontifex and @Pontifex_es. To achieve this goal, hidden insight data extraction and sentiment analysis are carried out, along with the application of Social Network Analysis (SNA) techniques. The main outcome of the study is the positive correlation between the repercussion of the Pope’s tweets and the evolution of the Covid-19 incidence in Europe. Finally, the Latent Dirichlet Allocation (LDA) algorithm identifies the relevant topics in the analysis.\",\"PeriodicalId\":442336,\"journal\":{\"name\":\"Int. J. Cloud Appl. Comput.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Cloud Appl. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcac.305211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Cloud Appl. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcac.305211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在新冠肺炎危机期间,许多传播信息的网络如雨后春笋般涌现。本研究探讨了宗教在Covid-19大流行期间的影响。它将宗教理解为能够减轻社会挫折和危急情况的因素。为此,研究人员对社交平台Twitter在用户生成内容(UGC)框架下收集的107,786条推文进行了数据挖掘分析,这些推文与@Pontifex和@Pontifex_es发布的与Covid-19相关的推文相关联。为了实现这一目标,进行了隐藏洞察力数据提取和情感分析,以及社交网络分析(SNA)技术的应用。该研究的主要结果是教皇推文的反响与欧洲新冠疫情的演变之间存在正相关关系。最后,潜狄利克雷分配(LDA)算法识别分析中的相关主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catholic Impact Evolution Through Public Twitter Data During COVID-19
During the Covid-19 crisis, many networks have sprung up disseminating information. This study examines the influence of religion during the Covid-19 pandemic. It understands religion as a factor capable of mitigating frustrations and critical situations in society. To this end, a data mining analysis was developed for a set of 107,786 tweets collected from the social platform Twitter in the framework of user-generated content (UGC), linked to the Covid-19 related tweets published by @Pontifex and @Pontifex_es. To achieve this goal, hidden insight data extraction and sentiment analysis are carried out, along with the application of Social Network Analysis (SNA) techniques. The main outcome of the study is the positive correlation between the repercussion of the Pope’s tweets and the evolution of the Covid-19 incidence in Europe. Finally, the Latent Dirichlet Allocation (LDA) algorithm identifies the relevant topics in the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信