缺失值混合数据高斯Copula因果结构的鲁棒估计

Ruifei Cui, P. Groot, T. Heskes
{"title":"缺失值混合数据高斯Copula因果结构的鲁棒估计","authors":"Ruifei Cui, P. Groot, T. Heskes","doi":"10.1109/ICDM.2017.101","DOIUrl":null,"url":null,"abstract":"We consider the problem of causal structure learning from data with missing values, assumed to be drawn from a Gaussian copula model. First, we extend the 'Rank PC' algorithm, designed for Gaussian copula models with purely continuous data (so-called nonparanormal models), to incomplete data by applying rank correlation to pairwise complete observations and replacing the sample size with an effective sample size in the conditional independence tests to account for the information loss from missing values. The resulting approach works when the data are missing completely at random (MCAR). Then, we propose a Gibbs sampling procedure to draw correlation matrix samples from mixed data under missingness at random (MAR). These samples are translated into an average correlation matrix, and an effective sample size, resulting in the 'Copula PC' algorithm for incomplete data. Simulation study shows that: 1) the usage of the effective sample size significantly improves the performance of 'Rank PC' and 'Copula PC'; 2) 'Copula PC' estimates a more accurate correlation matrix and causal structure than 'Rank PC' under MCAR and, even more so, under MAR. Also, we illustrate our methods on a real-world data set about gene expression.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values\",\"authors\":\"Ruifei Cui, P. Groot, T. Heskes\",\"doi\":\"10.1109/ICDM.2017.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of causal structure learning from data with missing values, assumed to be drawn from a Gaussian copula model. First, we extend the 'Rank PC' algorithm, designed for Gaussian copula models with purely continuous data (so-called nonparanormal models), to incomplete data by applying rank correlation to pairwise complete observations and replacing the sample size with an effective sample size in the conditional independence tests to account for the information loss from missing values. The resulting approach works when the data are missing completely at random (MCAR). Then, we propose a Gibbs sampling procedure to draw correlation matrix samples from mixed data under missingness at random (MAR). These samples are translated into an average correlation matrix, and an effective sample size, resulting in the 'Copula PC' algorithm for incomplete data. Simulation study shows that: 1) the usage of the effective sample size significantly improves the performance of 'Rank PC' and 'Copula PC'; 2) 'Copula PC' estimates a more accurate correlation matrix and causal structure than 'Rank PC' under MCAR and, even more so, under MAR. Also, we illustrate our methods on a real-world data set about gene expression.\",\"PeriodicalId\":254086,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2017.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑从缺失值数据中学习因果结构的问题,假设从高斯联结模型中提取。首先,我们将专为具有纯连续数据的高斯copula模型(所谓的非超常模型)设计的“Rank PC”算法扩展到不完整数据,方法是将秩相关应用于两两完全观测,并用条件独立性检验中的有效样本量替换样本量,以解释缺失值造成的信息损失。当数据完全随机丢失(MCAR)时,所得到的方法有效。然后,我们提出了一种Gibbs抽样方法,从随机缺失(MAR)情况下的混合数据中提取相关矩阵样本。这些样本被转化为平均相关矩阵,以及有效样本量,导致“Copula PC”算法的不完整数据。仿真研究表明:1)有效样本量的使用显著提高了Rank PC和Copula PC的性能;2)在MCAR下,“Copula PC”比“Rank PC”估计出更准确的相关矩阵和因果结构,在mar下更是如此。此外,我们在真实世界的基因表达数据集上说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values
We consider the problem of causal structure learning from data with missing values, assumed to be drawn from a Gaussian copula model. First, we extend the 'Rank PC' algorithm, designed for Gaussian copula models with purely continuous data (so-called nonparanormal models), to incomplete data by applying rank correlation to pairwise complete observations and replacing the sample size with an effective sample size in the conditional independence tests to account for the information loss from missing values. The resulting approach works when the data are missing completely at random (MCAR). Then, we propose a Gibbs sampling procedure to draw correlation matrix samples from mixed data under missingness at random (MAR). These samples are translated into an average correlation matrix, and an effective sample size, resulting in the 'Copula PC' algorithm for incomplete data. Simulation study shows that: 1) the usage of the effective sample size significantly improves the performance of 'Rank PC' and 'Copula PC'; 2) 'Copula PC' estimates a more accurate correlation matrix and causal structure than 'Rank PC' under MCAR and, even more so, under MAR. Also, we illustrate our methods on a real-world data set about gene expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信