野生图像标签的深度分类器

Hamid Izadinia, Bryan C. Russell, Ali Farhadi, M. Hoffman, Aaron Hertzmann
{"title":"野生图像标签的深度分类器","authors":"Hamid Izadinia, Bryan C. Russell, Ali Farhadi, M. Hoffman, Aaron Hertzmann","doi":"10.1145/2814815.2814821","DOIUrl":null,"url":null,"abstract":"This paper proposes direct learning of image classification from image tags in the wild, without filtering. Each wild tag is supplied by the user who shared the image online. Enormous numbers of these tags are freely available, and they give insight about the image categories important to users and to image classification. Our main contribution is an analysis of the Flickr 100 Million Image dataset, including several useful observations about the statistics of these tags. We introduce a large-scale robust classification algorithm, in order to handle the inherent noise in these tags, and a calibration procedure to better predict objective annotations. We show that freely available, wild tag can obtain similar or superior results to large databases of costly manual annotations.","PeriodicalId":215083,"journal":{"name":"MMCommons '15","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Deep Classifiers from Image Tags in the Wild\",\"authors\":\"Hamid Izadinia, Bryan C. Russell, Ali Farhadi, M. Hoffman, Aaron Hertzmann\",\"doi\":\"10.1145/2814815.2814821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes direct learning of image classification from image tags in the wild, without filtering. Each wild tag is supplied by the user who shared the image online. Enormous numbers of these tags are freely available, and they give insight about the image categories important to users and to image classification. Our main contribution is an analysis of the Flickr 100 Million Image dataset, including several useful observations about the statistics of these tags. We introduce a large-scale robust classification algorithm, in order to handle the inherent noise in these tags, and a calibration procedure to better predict objective annotations. We show that freely available, wild tag can obtain similar or superior results to large databases of costly manual annotations.\",\"PeriodicalId\":215083,\"journal\":{\"name\":\"MMCommons '15\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MMCommons '15\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2814815.2814821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMCommons '15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814815.2814821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

本文提出了不经过过滤,直接从图像标签中学习图像分类的方法。每个野标记都是由在线共享图像的用户提供的。大量的这些标签是免费提供的,它们提供了对用户和图像分类重要的图像类别的见解。我们的主要贡献是对Flickr 1亿图像数据集的分析,包括对这些标签统计的一些有用的观察。我们引入了一种大规模鲁棒分类算法来处理这些标签中的固有噪声,并引入了一种校准程序来更好地预测客观注释。我们表明,免费提供的野生标记可以获得与昂贵的手动注释的大型数据库相似或更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Classifiers from Image Tags in the Wild
This paper proposes direct learning of image classification from image tags in the wild, without filtering. Each wild tag is supplied by the user who shared the image online. Enormous numbers of these tags are freely available, and they give insight about the image categories important to users and to image classification. Our main contribution is an analysis of the Flickr 100 Million Image dataset, including several useful observations about the statistics of these tags. We introduce a large-scale robust classification algorithm, in order to handle the inherent noise in these tags, and a calibration procedure to better predict objective annotations. We show that freely available, wild tag can obtain similar or superior results to large databases of costly manual annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信